How to raise the RTL abstraction level and design conciseness with SystemVerilog - Part 2
By Sachin Kakkar, Sanjay Gupta, Ayan Banerjee, and Rohit Goel, Mentor Graphics
Programmable Logic DesignLine -- (05/14/08, 12:43:00 PM EDT)
As discussed in Part 1, this article proposes four steps to raise the abstraction level of current Verilog HDL designs and provide a phase wise approach to migrate to SystemVerilog.
- Enhance conciseness and expressiveness of designs.
- Add built-in checks to avoid design issues.
- Design efficient FSM and RAM/ROM memory models.
- Graduate to object oriented generic hardware designs.
In Part 1 we examined Steps1 and 2 – conciseness of expression and built-in code verification. Now, in Part 2, we will elaborate on Steps 3 and 4 and demonstrate how designers can improve code encapsulation, re-use, and consistency in model behavior – all without adversely affecting the quality of results.
Step 3: Design efficient FSMs and RAM/ROM memory models
#1 – Designing finite state machines
SystemVerilog enables modelling at higher levels of abstraction through the use of the following:
- Strongly typed enumerated types with state encoding.
- 2-state data types and user defined types.
- Specialized always_comb, always_latch, and always_ff blocks.
- Unique and priority case statements.
These enhancements enable accurate modelling that simulate and synthesize correctly with consistent behaviour across all tools.
The new SystemVerilog coding style is also easy to read and maintain compared to the Verilog method of modelling FSM's.
To read the full article, click here
Related Semiconductor IP
- Bluetooth Low Energy 6.0 Digital IP
- Ultra-low power high dynamic range image sensor
- Flash Memory LDPC Decoder IP Core
- SLM Signal Integrity Monitor
- Digital PUF IP
Related White Papers
- 'Smart' verification moves beyond SystemVerilog 3.0
- SystemVerilog 3.1 adds assertions and testbench automation
- SystemVerilog key to new design paradigm
- Synopsys 'ARMs' SystemVerilog
Latest White Papers
- How Next-Gen Chips Are Unlocking RISC-V’s Customization Advantage
- Efficient Hardware-Assisted Heap Memory Safety for Embedded RISC-V Systems
- Automatically Retargeting Hardware and Code Generation for RISC-V Custom Instructions
- How Mature-Technology ASICs Can Give You the Edge
- Exploring the Latest Innovations in MIPI D-PHY and MIPI C-PHY