System-on-chip (SoC) design is all about IP management
By Efren Brito, Faraday Americas
EDN (June 13, 2024)
For most system-on-chip (SoC) designs, the most critical task is not RTL coding or even creating the chip architecture. Today, SoCs are designed primarily by assembling various silicon intellectual property (IP) blocks from multiple vendors. This makes managing silicon IP the dominant task in the design process.
Generally, less than a tenth of a new SoC design will be newly written RTL code. And often, the high-level chip architectural decisions will be clear: a variation on an existing architecture or a reflection of major data flows in the application layered on a standard bus or network-on-chip (NoC) structure.
But each piece of IP in the design—and there may be dozens of types and hundreds of instances—requires management. The chip designers must define requirements, select vendors and specific products, make any necessary customizations, set configuration parameters, and integrate the IP instances into a working, testable system. This process will consume most of the project resources until physical design.
This reality makes expertise in managing IP a significant factor in the success of an SoC design. Perhaps less obviously, access to IP—particularly the ability to get attention, detailed specifications and documentation, bug fixes, and customization support from large, influential IP vendors—becomes a critical issue. The growing complexity of the IP blocks only adds to the challenge.
To read the full article, click here
Related Semiconductor IP
- USB 4.0 V2 PHY - 4TX/2RX, TSMC N3P , North/South Poly Orientation
- FH-OFDM Modem
- NFC wireless interface supporting ISO14443 A and B with EEPROM on SMIC 180nm
- PQC CRYSTALS core for accelerating NIST FIPS 202 FIPS 203 and FIPS 204
- UCIe Controller baseline for Streaming Protocols for ASIL B Compliant, AEC-Q100 Grade 2
Related White Papers
- New Power Management IP Solution Can Dramatically Increase SoC Energy Efficiency
- Integrating VESA DSC and MIPI DSI in a System-on-Chip (SoC): Addressing Design Challenges and Leveraging Arasan IP Portfolio
- An Overview of Secret Key and Identity Management for System-on-Chip Architects
- IP Exchange Through Handoff for Easy System-On-Chip Design
Latest White Papers
- FastPath: A Hybrid Approach for Efficient Hardware Security Verification
- Automotive IP-Cores: Evolution and Future Perspectives
- TROJAN-GUARD: Hardware Trojans Detection Using GNN in RTL Designs
- How a Standardized Approach Can Accelerate Development of Safety and Security in Automotive Imaging Systems
- SV-LLM: An Agentic Approach for SoC Security Verification using Large Language Models