Building Cost Effective and Robust SoC-based Network Appliances
By Krishnan Venkataraman, VP of Engineering, MosChip Semiconductor Technology Ltd.
Embedded.com (05/17/10, 08:02:00 PM EDT)
Today, consumers and businesses expect secured access to their information or content on demand anywhere at any time. As digital media is now a standard for audio/video (AV) content, its access and delivery has become very complex, particularly for video applications.
This is primarily due to a high network bandwidth requirement for high definition (HD) resolutions and processing bandwidth requirements for video decoding, such as MPEG4/H.264. In addition, the Internet has become a way of life in many aspects and as a result user authentication and transaction authorization is becoming more significant for service providers.
System-on-a-Chip (SoC) solutions have been called upon to simplify many of these complexities within various demanding applications across many digital consumer products.
In fact, SoCs are providing improved product solutions in almost all areas, such as enterprise, retail, financial, healthcare, automotive, process control and more. Well optimized SoCs integrated with the most commonly needed functions and peripherals, yet generic to address different application verticals, can offer comprehensive embedded system solutions.
For example, with a base SoC as the foundation, a completed embedded system solution can be made to offer connectivity, content storage, content delivery, security and content presentation.
Tuned as a Network Appliance Processor (NAP) a SoC-based system has proven well capable and cost-effective with applications such as a USB Server, network attached storage (NAS), Point-of-Sale (PoS) terminals, Digital Signage and Smart Card Terminal applications.
To read the full article, click here
Related Semiconductor IP
- USB 4.0 V2 PHY - 4TX/2RX, TSMC N3P , North/South Poly Orientation
- FH-OFDM Modem
- NFC wireless interface supporting ISO14443 A and B with EEPROM on SMIC 180nm
- PQC CRYSTALS core for accelerating NIST FIPS 202 FIPS 203 and FIPS 204
- UCIe Controller baseline for Streaming Protocols for ASIL B Compliant, AEC-Q100 Grade 2
Related White Papers
- Network processor designer tackles verification 'nightmare'
- SoC eyes VoIP appliances
- Soc Design -> Emulation verifies multiple network interfaces
- SRAM soft errors cause hard network problems
Latest White Papers
- FastPath: A Hybrid Approach for Efficient Hardware Security Verification
- Automotive IP-Cores: Evolution and Future Perspectives
- TROJAN-GUARD: Hardware Trojans Detection Using GNN in RTL Designs
- How a Standardized Approach Can Accelerate Development of Safety and Security in Automotive Imaging Systems
- SV-LLM: An Agentic Approach for SoC Security Verification using Large Language Models