Ruggedizing Buck Converters For Space And Other High Radiation Environments
By Nazzareno (Reno) Rossetti, Alphacore
Any off-the-shelf component utilized in a space application will likely degrade and fail prematurely once exposed to the severity of the space environment. But not all is lost, as a wealth of ruggedization techniques are able to meet the challenges of this unforgiving environment. In this article, we review the effect of radiation on passive and active electronic components and the technologies, processes and device techniques that make them radiation-tolerant or radiation-hard. Subsequently we discuss Alphacore’s design of a radiation-hardened dc-dc converter at the heart of a space power management and distribution system. Able to properly function at up to 200 Mrad of TID, the converter can operate within the large hadron collider at CERN, and in space satellite and probe missions.
To read the full article, click here
Related Semiconductor IP
- JESD204E Controller IP
- eUSB2V2.0 Controller + PHY IP
- I/O Library with LVDS in SkyWater 90nm
- 50G PON LDPC Encoder/Decoder
- UALink Controller
Related Articles
- PCIe 5.0: The universal high-speed interconnect for High Bandwidth and Low Latency Applications Design Challenges & Solutions
- Design and Implementation of Test Infrastructure for Higher Parallel Wafer Level Testing of System-on-Chip
- CD-PIM: A High-Bandwidth and Compute-Efficient LPDDR5-Based PIM for Low-Batch LLM Acceleration on Edge-Device
- High Speed, Low Power and Flexibility Drive DisplayPort's Increasing Popularity
Latest Articles
- Crypto-RV: High-Efficiency FPGA-Based RISC-V Cryptographic Co-Processor for IoT Security
- In-Pipeline Integration of Digital In-Memory-Computing into RISC-V Vector Architecture to Accelerate Deep Learning
- QMC: Efficient SLM Edge Inference via Outlier-Aware Quantization and Emergent Memories Co-Design
- ChipBench: A Next-Step Benchmark for Evaluating LLM Performance in AI-Aided Chip Design
- COVERT: Trojan Detection in COTS Hardware via Statistical Activation of Microarchitectural Events