Making hardware more like software
Mario Khalaf and Ajay Jagtiani, Altera Corporation
EETimes (5/27/2011 6:10 PM EDT)
Here's a way to partially or fully reconfigure an FPGA without rebooting the operating system.
One of the biggest advantages of field programmable gate arrays (FPGAs) is the ability to change the functionality of the silicon by loading a new configuration file into the device. Controlling the configuration of the FPGA is usually done by an on-board processor that communicates to a flash-based configuration storage device.
The configuration mechanisms are usually custom to the specific FPGA and require specialized on-board connections and rules. Overall, the user usually embeds the flash device on-board forcing an estimate of the configuration size before storing all possible configuration streams of the FPGA on that device. In this article, we propose a device architecture and software method that alleviates this problem and also provides many advanced features to the processor.
To read the full article, click here
Related Semiconductor IP
- USB 4.0 V2 PHY - 4TX/2RX, TSMC N3P , North/South Poly Orientation
- FH-OFDM Modem
- NFC wireless interface supporting ISO14443 A and B with EEPROM on SMIC 180nm
- PQC CRYSTALS core for accelerating NIST FIPS 202 FIPS 203 and FIPS 204
- USB Full Speed Transceiver
Related White Papers
- Embedded FPGA design without hard barriers using OpenBus
- Control an FPGA bus without using the processor
- The rise of FPGA technology in High-Performance Computing
- Re-Configurable Platform for Design, Verification and Implementation of SoCs (Design and Verification without Constraints)
Latest White Papers
- FastPath: A Hybrid Approach for Efficient Hardware Security Verification
- Automotive IP-Cores: Evolution and Future Perspectives
- TROJAN-GUARD: Hardware Trojans Detection Using GNN in RTL Designs
- How a Standardized Approach Can Accelerate Development of Safety and Security in Automotive Imaging Systems
- SV-LLM: An Agentic Approach for SoC Security Verification using Large Language Models