Optimize your DSPs for power and performance
January 04, 2007 -- dspdesignline.com
The ever-growing demand for rich, multimedia signal processing in mobile devices raises a chronic technology challenge. The challenge is to squeeze higher functionality and performance within increasingly tighter power and space constraints. As a result, power-performance metrics are now a central concern in DSP design. New methods have been devised enabling designers to address the main areas of power consumption— namely leakage power, clock trees, logic transitions, and power grids— to significantly improve performance compared to conventional techniques.
In today's CMOS technology, power is consumed in two basic ways: statically and dynamically. Static power is consumed continuously—even during standby operation—through various leakage mechanisms. Dynamic power is consumed only during activity, such as logic and interface operations.
To read the full article, click here
Related Semiconductor IP
- Process/Voltage/Temperature Sensor with Self-calibration (Supply voltage 1.2V) - TSMC 3nm N3P
- USB 20Gbps Device Controller
- SM4 Cipher Engine
- Ultra-High-Speed Time-Interleaved 7-bit 64GSPS ADC on 3nm
- Fault Tolerant DDR2/DDR3/DDR4 Memory controller
Related White Papers
- Achieving Lower Power, Better Performance, And Optimized Wire Length In Advanced SoC Designs
- Boosting RISC-V SoC performance for AI and ML applications
- Balancing Power and Performance With Task Dependencies in Multi-Core Systems
- Optimize performance and power consumption with DSP hardware, software
Latest White Papers
- Fault Injection in On-Chip Interconnects: A Comparative Study of Wishbone, AXI-Lite, and AXI
- eFPGA – Hidden Engine of Tomorrow’s High-Frequency Trading Systems
- aTENNuate: Optimized Real-time Speech Enhancement with Deep SSMs on RawAudio
- Combating the Memory Walls: Optimization Pathways for Long-Context Agentic LLM Inference
- Hardware Acceleration of Kolmogorov-Arnold Network (KAN) in Large-Scale Systems