Power-efficient SDR platform handles multimode 4G
Itay Lusky, Altair Semiconductor
9/11/2010 10:24 PM EDT
The mobile Internet era is spurring development of multiple 4G technologies; not just 3GPP-LTE, but other 4G standards, including Mobile WiMax 802.16e and Japanese XG-PHS, are gaining global footprints. The proliferation of multiple legacy 2G and 3G technologies magnifies the need for development of multimode devices, including chip sets that can process a variety of broadband technologies while handling high throughput at low power consumption.
The cellular market’s fragmentation raises the need for a programmable platform; indeed, development of a powerful yet power-efficient programmable platform is not a new idea. Not until now, however, have such platforms been both technologically feasible and cost-effective.
This article presents the fundamental concepts of 4G technologies; describes the challenges in developing an efficient 4G user equipment (UE) solution and explains why software-defined radio technology is an excellent means for implementing it efficiently; and describes a unique SDR architecture allowing a programmable, powerful yet power-efficient implementation.
To read the full article, click here
Related Semiconductor IP
- eUSB2V2.0 Controller + PHY IP
- I/O Library with LVDS in SkyWater 90nm
- 50G PON LDPC Encoder/Decoder
- UALink Controller
- RISC-V Debug & Trace IP
Related Articles
- A 4GHz fractional-N synthesizer for multi-mode wireless applications
- Pondering the SoC platform
- Panel finds many ways to build a platform
- Platform approach speeds MIPS-based SoCs
Latest Articles
- ChipBench: A Next-Step Benchmark for Evaluating LLM Performance in AI-Aided Chip Design
- COVERT: Trojan Detection in COTS Hardware via Statistical Activation of Microarchitectural Events
- A Reconfigurable Framework for AI-FPGA Agent Integration and Acceleration
- Veri-Sure: A Contract-Aware Multi-Agent Framework with Temporal Tracing and Formal Verification for Correct RTL Code Generation
- FlexLLM: Composable HLS Library for Flexible Hybrid LLM Accelerator Design