Picking the right MPSoC-based video architecture: Part 4
By Santanu Dutta, Jens Rennert, Tiehan Lv, Jiang Xu, Shengqi Yang, and Wayne Wolf
Embedded.com (08/18/09, 11:21:00 PM EDT)
To provide some perspective on what we discussed in Part 1, Part 2, and Part 3, in this last part in this series, we will consider the important topic of characterization of applications and architectures.
To this end, trace-driven simulation is widely used to evaluate computer architectures and are useful in MPSoC design. Because we know more about the application code to be executed on an application-specific MPSoC design, we can use execution traces to refine the design, starting with capturing fairly general characteristics of the application and moving toward a more detailed study of the application running on a refined architectural model.
Because video applications are computationally intensive, we expect that more than one platform SoC will be necessary to build video systems for quite some time. For some relatively simple applications, it is possible to build a single platform that can support a wide variety of software.
To read the full article, click here
Related Semiconductor IP
- Flexible Pixel Processor Video IP
- Complex Digital Up Converter
- Bluetooth Low Energy 6.0 Digital IP
- Verification IP for Ultra Ethernet (UEC)
- MIPI SWI3S Manager Core IP
Related White Papers
- Picking the right MPSoC-based video architecture: Part 1
- Processor Architecture for High Performance Video Decode
- Reconfiguring Design -> C-based architecture assembly supports custom design
- Consumer IC Advances -> Christmas list: tricks to enhance audio, video
Latest White Papers
- RISC-V basics: The truth about custom extensions
- Unlocking the Power of Digital Twins in ASICs with Adaptable eFPGA Hardware
- Security Enclave Architecture for Heterogeneous Security Primitives for Supply-Chain Attacks
- relOBI: A Reliable Low-latency Interconnect for Tightly-Coupled On-chip Communication
- Enabling Space-Grade AI/ML with RISC-V: A Fully European Stack for Autonomous Missions