Picking the right MPSoC-based video architecture: Part 4
By Santanu Dutta, Jens Rennert, Tiehan Lv, Jiang Xu, Shengqi Yang, and Wayne Wolf
Embedded.com (08/18/09, 11:21:00 PM EDT)
To provide some perspective on what we discussed in Part 1, Part 2, and Part 3, in this last part in this series, we will consider the important topic of characterization of applications and architectures.
To this end, trace-driven simulation is widely used to evaluate computer architectures and are useful in MPSoC design. Because we know more about the application code to be executed on an application-specific MPSoC design, we can use execution traces to refine the design, starting with capturing fairly general characteristics of the application and moving toward a more detailed study of the application running on a refined architectural model.
Because video applications are computationally intensive, we expect that more than one platform SoC will be necessary to build video systems for quite some time. For some relatively simple applications, it is possible to build a single platform that can support a wide variety of software.
To read the full article, click here
Related Semiconductor IP
- Post-Quantum Digital Signature IP Core
- Compact Embedded RISC-V Processor
- Power-OK Monitor
- RISC-V-Based, Open Source AI Accelerator for the Edge
- Securyzr™ neo Core Platform
Related White Papers
- Picking the right MPSoC-based video architecture: Part 1
- Processor Architecture for High Performance Video Decode
- Reconfiguring Design -> C-based architecture assembly supports custom design
- Consumer IC Advances -> Christmas list: tricks to enhance audio, video
Latest White Papers
- DRsam: Detection of Fault-Based Microarchitectural Side-Channel Attacks in RISC-V Using Statistical Preprocessing and Association Rule Mining
- ShuffleV: A Microarchitectural Defense Strategy against Electromagnetic Side-Channel Attacks in Microprocessors
- Practical Considerations of LDPC Decoder Design in Communications Systems
- A Direct Memory Access Controller (DMAC) for Irregular Data Transfers on RISC-V Linux Systems
- A logically correct SoC design isn’t an optimized design