Algorithmic delay and synchronization in MPEG audio codecs
By Ranjani H G and Ameet Kalagi, Ittiam Systems Pvt Ltd
Audio DesignLine (05/05/10, 02:26:00 PM EDT)
Introduction
A variety of audio compression technologies are being used today, each having a distinct advantage over the other in terms of compression ratio, coding delay, coding complexity or legacy system compatibility. This makes subset of audio codecs suited for particular systems and makes working with multiple audio compression technologies indispensable.
In designing time-critical systems like conferencing, broadcast transcoding systems or be it in designing any audio and video play-out system, the knowledge of the delay encountered while audio encoding or decoding becomes critical.
Figure 1: Audio Delay encountered in systems
Figure 1 tries to capture the various stages at which audio data encounters delay in different applications and systems.
To read the full article, click here
Related Semiconductor IP
- USB 4.0 V2 PHY - 4TX/2RX, TSMC N3P , North/South Poly Orientation
- FH-OFDM Modem
- NFC wireless interface supporting ISO14443 A and B with EEPROM on SMIC 180nm
- PQC CRYSTALS core for accelerating NIST FIPS 202 FIPS 203 and FIPS 204
- USB Full Speed Transceiver
Related White Papers
- MPEG Standards -> Streaming audio needs interoperability
- Paving the way for the next generation audio codec for the True Wireless Stereo (TWS) applications - PART 1 : TWS challenges explained
- Paving the way for the next generation audio codec for True Wireless Stereo (TWS) applications - PART 2 : Increasing play time
- Paving the way for the next generation audio codec for True Wireless Stereo (TWS) applications - PART 3 : Optimizing latency key factor
Latest White Papers
- FastPath: A Hybrid Approach for Efficient Hardware Security Verification
- Automotive IP-Cores: Evolution and Future Perspectives
- TROJAN-GUARD: Hardware Trojans Detection Using GNN in RTL Designs
- How a Standardized Approach Can Accelerate Development of Safety and Security in Automotive Imaging Systems
- SV-LLM: An Agentic Approach for SoC Security Verification using Large Language Models