MBIST verification: Best practices & challenges
Abhilash Kaushal & Kartik Kathuria (Freescale)
EDN (July 25, 2014)
Embedded memories are an indispensable part of any deep submicron System on a Chip (SoC). The requirement arises not only to validate the digital logic against manufacturing defects but also do robust testing of large memory blocks post-manufacturing. MBIST (Memory built-in self-test) provides an effective solution for testing of such large memories. Verification of functioning MBIST is an essential part in any SoC design cycle, as it enables the designer to detect beforehand any issues related to MBIST. The main focus of this paper is to discuss the general issues faced, and best practices to be followed, during MBIST Verification.
MBIST is a self test logic that generates effective set of March Algorithms through inbuilt clock, data and address generator and read/write controller to detect possibly all faults that could be present inside a typical RAM cell whether it is stuck at 0/1 or slow to rise, slow to fall transition faults or coupling faults.
To read the full article, click here
Related Semiconductor IP
- eUSB2V2.0 Controller + PHY IP
- I/O Library with LVDS in SkyWater 90nm
- 50G PON LDPC Encoder/Decoder
- UALink Controller
- RISC-V Debug & Trace IP
Related Articles
- SoC designers describe their 'best practices'
- Best Practices for a Reusable Verification Environment
- Challenges and Benefits of Low Power Design Verification with CPF for a standalone IP
- Verification Challenges of High Speed Interfaces
Latest Articles
- QMC: Efficient SLM Edge Inference via Outlier-Aware Quantization and Emergent Memories Co-Design
- ChipBench: A Next-Step Benchmark for Evaluating LLM Performance in AI-Aided Chip Design
- COVERT: Trojan Detection in COTS Hardware via Statistical Activation of Microarchitectural Events
- A Reconfigurable Framework for AI-FPGA Agent Integration and Acceleration
- Veri-Sure: A Contract-Aware Multi-Agent Framework with Temporal Tracing and Formal Verification for Correct RTL Code Generation