How to prevent FPGA-based projects from going astray
Adam Taylor, E2V
embedded.com (February 22, 2017)
During the course of my career, I have been involved with developing a number of FPGA designs for some really interesting projects. Sadly, I have also been involved in rescuing several FPGA designs that have gone badly astray. As I worked on these problem designs, it became apparent that -- although the target applications and the members of the development teams were different -- the designs shared some common points that doomed them to failure before the first engineer even sat down to write the first line of HDL code.
With this in mind, I thought I would run through five common issues that I've observed as part of rescuing these projects. These issues are as follows:
To read the full article, click here
Related Semiconductor IP
- Sine Wave Frequency Generator
- CAN XL Verification IP
- Rad-Hard GPIO, ODIO & LVDS in SkyWater 90nm
- 1.22V/1uA Reference voltage and current source
- 1.2V SLVS Transceiver in UMC 110nm
Related White Papers
- Going from 8- to 32-bit MCUs takes tools
- Going from GDSII to OASIS
- How to improve FPGA-based ASIC prototyping with SystemVerilog
- How to transform video SerDes from a nightmare to a dream
Latest White Papers
- OmniSim: Simulating Hardware with C Speed and RTL Accuracy for High-Level Synthesis Designs
- Balancing Power and Performance With Task Dependencies in Multi-Core Systems
- LLM Inference with Codebook-based Q4X Quantization using the Llama.cpp Framework on RISC-V Vector CPUs
- PCIe 5.0: The universal high-speed interconnect for High Bandwidth and Low Latency Applications Design Challenges & Solutions
- Basilisk: A 34 mm2 End-to-End Open-Source 64-bit Linux-Capable RISC-V SoC in 130nm BiCMOS