How to exploit 17 tried and true DSP power optimization techniques for wireless applications

Code size, speed and power consumption all have a significant impact on the the system-level product that integrates a DSP. The more power an embedded application consumes, for example, the larger the battery or fan required to drive it.
To reduce power, an application must run in as few cycles as possible because each cycle consumes a measurable amount of energy. In this sense, performance and power optimization are similar�using the least number of cycles is an excellent way to meet both performance and power optimization goals.
Although performance and power optimization strategies may share a similar goal, there are subtle differences in how those goals are achieved. This article will explore those differences from the perspective of wireless system design and it will discuss the resulting strategies.
To read the full article, click here
Related Semiconductor IP
- Process/Voltage/Temperature Sensor with Self-calibration (Supply voltage 1.2V) - TSMC 3nm N3P
- USB 20Gbps Device Controller
- SM4 Cipher Engine
- Ultra-High-Speed Time-Interleaved 7-bit 64GSPS ADC on 3nm
- Fault Tolerant DDR2/DDR3/DDR4 Memory controller
Related White Papers
- How silicon and circuit optimizations help FPGAs offer lower size, power and cost in video bridging applications
- Paving the way for the next generation of audio codec for True Wireless Stereo (TWS) applications - PART 5 : Cutting time to market in a safe and timely manner
- How Low Can You Go? Pushing the Limits of Transistors - Deep Low Voltage Enablement of Embedded Memories and Logic Libraries to Achieve Extreme Low Power
- Compiler optimization for DSP applications
Latest White Papers
- Fault Injection in On-Chip Interconnects: A Comparative Study of Wishbone, AXI-Lite, and AXI
- eFPGA – Hidden Engine of Tomorrow’s High-Frequency Trading Systems
- aTENNuate: Optimized Real-time Speech Enhancement with Deep SSMs on RawAudio
- Combating the Memory Walls: Optimization Pathways for Long-Context Agentic LLM Inference
- Hardware Acceleration of Kolmogorov-Arnold Network (KAN) in Large-Scale Systems