How to exploit 17 tried and true DSP power optimization techniques for wireless applications
To reduce power and turbocharge performance, just minimize the number of processor cycles. But that's where the easy part ends.

Code size, speed and power consumption all have a significant impact on the the system-level product that integrates a DSP. The more power an embedded application consumes, for example, the larger the battery or fan required to drive it.
Code size, speed and power consumption all have a significant impact on the the system-level product that integrates a DSP. The more power an embedded application consumes, for example, the larger the battery or fan required to drive it.
To reduce power, an application must run in as few cycles as possible because each cycle consumes a measurable amount of energy. In this sense, performance and power optimization are similar�using the least number of cycles is an excellent way to meet both performance and power optimization goals.
Although performance and power optimization strategies may share a similar goal, there are subtle differences in how those goals are achieved. This article will explore those differences from the perspective of wireless system design and it will discuss the resulting strategies.
To read the full article, click here
Related Semiconductor IP
- HBM4 PHY IP
- Ultra-Low-Power LPDDR3/LPDDR2/DDR3L Combo Subsystem
- HBM4 Controller IP
- IPSEC AES-256-GCM (Standalone IPsec)
- Parameterizable compact BCH codec
Related Articles
- How silicon and circuit optimizations help FPGAs offer lower size, power and cost in video bridging applications
- Paving the way for the next generation of audio codec for True Wireless Stereo (TWS) applications - PART 5 : Cutting time to market in a safe and timely manner
- Compiler optimization for DSP applications
- How to exploit the uniqueness of FPGA silicon for security applications
Latest Articles
- A 14ns-Latency 9Gb/s 0.44mm² 62pJ/b Short-Blocklength LDPC Decoder ASIC in 22FDX
- Pipeline Stage Resolved Timing Characterization of FPGA and ASIC Implementations of a RISC V Processor
- Lyra: A Hardware-Accelerated RISC-V Verification Framework with Generative Model-Based Processor Fuzzing
- Leveraging FPGAs for Homomorphic Matrix-Vector Multiplication in Oblivious Message Retrieval
- Extending and Accelerating Inner Product Masking with Fault Detection via Instruction Set Extension