High-definition video scaler ASIC development from FPGA
videsignline.com, September 29, 2006
How a high-definition video scaler ASIC was quickly created using a flexible FPGA-to-ASIC conversion flow. This ensured reproduction of the FPGA functionality and enabled first time fully functional silicon supporting video resolutions up to 1080p.
Consumers are buying ever larger numbers of liquid crystal displays (LCD), plasma and digital light processing (DLP) based systems. As digital displays continue to offer higher resolution capabilities, high quality video scaling is becoming a key feature for the new generation of high definition video sources.
This article details the implementation and verification flows of a high-definition video scaler ASIC implemented in a 0.18um standard cell technology. The Anchor Bay Technology application targets the consumer market space for high-definition video sources (for example, HD-DVD and Blu-ray players). Achieving quick time-to-market was critical for the success of the project, in addition to beating competitive products in cost, features and ease-of-use. An FPGA prototype was used for at-speed verification of all functionality, especially image quality enhancements.
To read the full article, click here
Related Semiconductor IP
- USB 4.0 V2 PHY - 4TX/2RX, TSMC N3P , North/South Poly Orientation
- FH-OFDM Modem
- NFC wireless interface supporting ISO14443 A and B with EEPROM on SMIC 180nm
- PQC CRYSTALS core for accelerating NIST FIPS 202 FIPS 203 and FIPS 204
- USB Full Speed Transceiver
Related White Papers
- Generating High Speed CSI2 Video by an FPGA
- Implementing high Speed USB functionality with FPGA- and ASIC-based designs
- Micros benefit from ASIC heritage
- Meeting the Challenge of Real-Time Video Encoding: Migrating From H.263 to H.264
Latest White Papers
- FastPath: A Hybrid Approach for Efficient Hardware Security Verification
- Automotive IP-Cores: Evolution and Future Perspectives
- TROJAN-GUARD: Hardware Trojans Detection Using GNN in RTL Designs
- How a Standardized Approach Can Accelerate Development of Safety and Security in Automotive Imaging Systems
- SV-LLM: An Agentic Approach for SoC Security Verification using Large Language Models