FPGA-to-ASIC integration provides flexibility in automotive microcontrollers
The primary benefit of using MCUs has been high level system integration combined with relatively low cost. However, there are hidden costs associated with these devices well beyond the unit price.
The widely applied microcontroller in automotive electronics is heading full-speed at a wall of time and cost. The primary benefit of using microcontrollers (MCUs) has been high level system integration combined with relatively low cost. However, there are hidden costs associated with these devices well beyond the unit price. For example, if the chosen part does not have just the right mix of features, it must be augmented with external logic, software, or other integrated devices.
Further, with rapidly changing end-market requirements far more common in today's automotive sector, MCUs often become quickly unavailable. Many MCUs equipped with specialized features and a fixed number of dedicated interfaces do not fulfill market requirements after a short evaluation period. Consequently, system suppliers are being forced to redesign their hardware and re-write associated software, in some cases even having to change the processor core.
To read the full article, click here
Related Semiconductor IP
- Flexible Pixel Processor Video IP
- Complex Digital Up Converter
- Bluetooth Low Energy 6.0 Digital IP
- Verification IP for Ultra Ethernet (UEC)
- MIPI SWI3S Manager Core IP
Related White Papers
- Fault-robust microcontrollers allow automotive technology convergence: Part 1, the nature of faults
- How to choose an RTOS for your FPGA and ASIC designs
- Comparing IP integration approaches for FPGA implementation
- Evolving passive optical networks (PONs) demand FPGA design flexibility
Latest White Papers
- RISC-V basics: The truth about custom extensions
- Unlocking the Power of Digital Twins in ASICs with Adaptable eFPGA Hardware
- Security Enclave Architecture for Heterogeneous Security Primitives for Supply-Chain Attacks
- relOBI: A Reliable Low-latency Interconnect for Tightly-Coupled On-chip Communication
- Enabling Space-Grade AI/ML with RISC-V: A Fully European Stack for Autonomous Missions