FPGA-to-ASIC integration provides flexibility in automotive microcontrollers
By Axel Zimmermann, Altera Europe
The primary benefit of using MCUs has been high level system integration combined with relatively low cost. However, there are hidden costs associated with these devices well beyond the unit price.
The widely applied microcontroller in automotive electronics is heading full-speed at a wall of time and cost. The primary benefit of using microcontrollers (MCUs) has been high level system integration combined with relatively low cost. However, there are hidden costs associated with these devices well beyond the unit price. For example, if the chosen part does not have just the right mix of features, it must be augmented with external logic, software, or other integrated devices.
Further, with rapidly changing end-market requirements far more common in today's automotive sector, MCUs often become quickly unavailable. Many MCUs equipped with specialized features and a fixed number of dedicated interfaces do not fulfill market requirements after a short evaluation period. Consequently, system suppliers are being forced to redesign their hardware and re-write associated software, in some cases even having to change the processor core.
The primary benefit of using MCUs has been high level system integration combined with relatively low cost. However, there are hidden costs associated with these devices well beyond the unit price.
The widely applied microcontroller in automotive electronics is heading full-speed at a wall of time and cost. The primary benefit of using microcontrollers (MCUs) has been high level system integration combined with relatively low cost. However, there are hidden costs associated with these devices well beyond the unit price. For example, if the chosen part does not have just the right mix of features, it must be augmented with external logic, software, or other integrated devices.
Further, with rapidly changing end-market requirements far more common in today's automotive sector, MCUs often become quickly unavailable. Many MCUs equipped with specialized features and a fixed number of dedicated interfaces do not fulfill market requirements after a short evaluation period. Consequently, system suppliers are being forced to redesign their hardware and re-write associated software, in some cases even having to change the processor core.
To read the full article, click here
Related Semiconductor IP
- 12-bit, 400 MSPS SAR ADC - TSMC 12nm FFC
- 10-bit Pipeline ADC - Tower 180 nm
- NoC Verification IP
- Simulation VIP for Ethernet UEC
- Automotive Grade PLLs, Oscillators, SerDes PMAs, LVDS/CML IP
Related Articles
- Fault-robust microcontrollers allow automotive technology convergence: Part 1, the nature of faults
- How to choose an RTOS for your FPGA and ASIC designs
- Comparing IP integration approaches for FPGA implementation
- Evolving passive optical networks (PONs) demand FPGA design flexibility
Latest Articles
- Analog Foundation Models
- Modeling and Optimizing Performance Bottlenecks for Neuromorphic Accelerators
- RISC-V Based TinyML Accelerator for Depthwise Separable Convolutions in Edge AI
- Exclude Smart in Functional Coverage
- A 0.32 mm² 100 Mb/s 223 mW ASIC in 22FDX for Joint Jammer Mitigation, Channel Estimation, and SIMO Data Detection