Designing for safety and security in a connected system
Dan Smith and Andrew Girson, Barr Group
embedded.com (September 06, 2017)
Good embedded software has always been designed for both safety and security. However, connectivity has introduced intolerable levels of security vulnerability in safety-critical applications such as medical, autonomous vehicles, and Internet of Things (IoT) devices.
The tight coupling of safety and security, combined with heightened threat levels, requires developers to fully understand the difference between safety and security; also, to apply industry best practices to ensure that both are designed into a product, right from the start (Figure 1).
To read the full article, click here
Related Semiconductor IP
- HBM4 PHY IP
- eFuse Controller IP
- Secure Storage Solution for OTP IP
- Ultra-Low-Power LPDDR3/LPDDR2/DDR3L Combo Subsystem
- MIPI D-PHY and FPD-Link (LVDS) Combinational Transmitter for TSMC 22nm ULP
Related Articles
- How a Standardized Approach Can Accelerate Development of Safety and Security in Automotive Imaging Systems
- Interstellar: Fully Partitioned and Efficient Security Monitoring Hardware Near a Processor Core for Protecting Systems against Attacks on Privileged Software
- A RISC-V Multicore and GPU SoC Platform with a Qualifiable Software Stack for Safety Critical Systems
- A 0.32 mm² 100 Mb/s 223 mW ASIC in 22FDX for Joint Jammer Mitigation, Channel Estimation, and SIMO Data Detection
Latest Articles
- Making Strong Error-Correcting Codes Work Effectively for HBM in AI Inference
- Sensitivity-Aware Mixed-Precision Quantization for ReRAM-based Computing-in-Memory
- ElfCore: A 28nm Neural Processor Enabling Dynamic Structured Sparse Training and Online Self-Supervised Learning with Activity-Dependent Weight Update
- A 14ns-Latency 9Gb/s 0.44mm² 62pJ/b Short-Blocklength LDPC Decoder ASIC in 22FDX
- Pipeline Stage Resolved Timing Characterization of FPGA and ASIC Implementations of a RISC V Processor