Designing for safety and security in a connected system
Dan Smith and Andrew Girson, Barr Group
embedded.com (September 06, 2017)
Good embedded software has always been designed for both safety and security. However, connectivity has introduced intolerable levels of security vulnerability in safety-critical applications such as medical, autonomous vehicles, and Internet of Things (IoT) devices.
The tight coupling of safety and security, combined with heightened threat levels, requires developers to fully understand the difference between safety and security; also, to apply industry best practices to ensure that both are designed into a product, right from the start (Figure 1).
To read the full article, click here
Related Semiconductor IP
- DDR5 MRDIMM PHY and Controller
- RVA23, Multi-cluster, Hypervisor and Android
- HBM4E PHY and controller
- 64 bit RISC-V Multicore Processor with 2048-bit VLEN and AMM
- NPU IP Core for Mobile
Related White Papers
- Interstellar: Fully Partitioned and Efficient Security Monitoring Hardware Near a Processor Core for Protecting Systems against Attacks on Privileged Software
- A RISC-V Multicore and GPU SoC Platform with a Qualifiable Software Stack for Safety Critical Systems
- Designing AI enabled System with SOTIF (Safety Of The Intended Functionality)
- Enabling security in embedded system using M.2 SSD
Latest White Papers
- QiMeng: Fully Automated Hardware and Software Design for Processor Chip
- RISC-V source class riscv_asm_program_gen, the brain behind assembly instruction generator
- Concealable physical unclonable functions using vertical NAND flash memory
- Ramping Up Open-Source RISC-V Cores: Assessing the Energy Efficiency of Superscalar, Out-of-Order Execution
- Transition Fixes in 3nm Multi-Voltage SoC Design