Creating multi-standard, multi-resolution video engines using configurable processors
September 15, 2006 -- videsignline.com
Customize the processor to your video application by creating instructions, register files, functional units and interfaces that accelerate the processing.
The explosive growth of consumer electronics and, specifically, handheld devices such as cellular phones, PDAs, and portable media players (PMPs) has drastically changed the requirements placed on the end-silicon providers. These silicon providers can no longer design ICs that are targeted at only one or two multimedia codecs or wireless standards. Consumers expect their devices to play media from different sources, coded using different standards, and downloaded using a variety of different wireless standards. Therefore, a new, more flexible design approach must be taken that provides for easy adoption of new media standards. In this article, we focus on the challenges and opportunities for video decoder and encoder engines.
To read the full article, click here
Related Semiconductor IP
- RVA23, Multi-cluster, Hypervisor and Android
- 64 bit RISC-V Multicore Processor with 2048-bit VLEN and AMM
- NPU IP Core for Mobile
- RISC-V AI Acceleration Platform - Scalable, standards-aligned soft chiplet IP
- H.264 Decoder
Related White Papers
- A configurable FPGA-based multi-channel high-definition Video Processing Platform
- Performance Evaluation of Inter-Processor Communication Mechanisms on the Multi-Core Processors using a Reconfigurable Device
- Configurable Processors for Video Processing SOCs
- Power Optimization using Multi BIT flops and MIMCAPs in 16nm technology and below
Latest White Papers
- QiMeng: Fully Automated Hardware and Software Design for Processor Chip
- RISC-V source class riscv_asm_program_gen, the brain behind assembly instruction generator
- Concealable physical unclonable functions using vertical NAND flash memory
- Ramping Up Open-Source RISC-V Cores: Assessing the Energy Efficiency of Superscalar, Out-of-Order Execution
- Transition Fixes in 3nm Multi-Voltage SoC Design