Creating multi-standard, multi-resolution video engines using configurable processors
September 15, 2006 -- videsignline.com
Customize the processor to your video application by creating instructions, register files, functional units and interfaces that accelerate the processing.
The explosive growth of consumer electronics and, specifically, handheld devices such as cellular phones, PDAs, and portable media players (PMPs) has drastically changed the requirements placed on the end-silicon providers. These silicon providers can no longer design ICs that are targeted at only one or two multimedia codecs or wireless standards. Consumers expect their devices to play media from different sources, coded using different standards, and downloaded using a variety of different wireless standards. Therefore, a new, more flexible design approach must be taken that provides for easy adoption of new media standards. In this article, we focus on the challenges and opportunities for video decoder and encoder engines.
To read the full article, click here
Related Semiconductor IP
- Process/Voltage/Temperature Sensor with Self-calibration (Supply voltage 1.2V) - TSMC 3nm N3P
- USB 20Gbps Device Controller
- SM4 Cipher Engine
- Ultra-High-Speed Time-Interleaved 7-bit 64GSPS ADC on 3nm
- Fault Tolerant DDR2/DDR3/DDR4 Memory controller
Related White Papers
- A configurable FPGA-based multi-channel high-definition Video Processing Platform
- Performance Evaluation of Inter-Processor Communication Mechanisms on the Multi-Core Processors using a Reconfigurable Device
- Configurable Processors for Video Processing SOCs
- Power Optimization using Multi BIT flops and MIMCAPs in 16nm technology and below
Latest White Papers
- Fault Injection in On-Chip Interconnects: A Comparative Study of Wishbone, AXI-Lite, and AXI
- eFPGA – Hidden Engine of Tomorrow’s High-Frequency Trading Systems
- aTENNuate: Optimized Real-time Speech Enhancement with Deep SSMs on RawAudio
- Combating the Memory Walls: Optimization Pathways for Long-Context Agentic LLM Inference
- Hardware Acceleration of Kolmogorov-Arnold Network (KAN) in Large-Scale Systems