How to defend against the cloning of your FPGA designs
pldesignline.com (September 17, 2008)
This article describes a new way of tagging designs to help to counter the rapidly growing trade in stolen IP and cloned designs. The topic is a difficult one for the industry to discuss; recently, however, more and more voices have been raised on the issue.
An estimate of the prevalence of counterfeit electronics has been put as high as 10%. (The International Chamber of Commerce website, for example, includes the statement: "Counterfeit electronics are estimated to account for 1 to 10 % of global electronic sales"). This is supported by the Alliance for Gray Markets and Counterfeit Abatement (AGMA), an industry group that consists of Hewlett Packard, Cisco, and other top tier electronics OEM companies, which estimates the loss to manufacturers at more than $100B. The hidden costs of damaged reputations and reliability issues for the end customer are more difficult to quantify.
One unfortunate consequence of the rise of programmable logic coupled with the decline of the ASIC is that it is now easier than ever to copy a design. Some Asian or Eastern European companies openly claim to specialise in "reverse engineering" or copying PCB layouts and memory contents. It is difficult, expensive, and time consuming to reverse engineer an ASIC, but simple to copy the configuration bit stream of the most popular FPGAs (see *note) as illustrated in Fig 1.
To read the full article, click here
Related Semiconductor IP
- USB 4.0 V2 PHY - 4TX/2RX, TSMC N3P , North/South Poly Orientation
- FH-OFDM Modem
- NFC wireless interface supporting ISO14443 A and B with EEPROM on SMIC 180nm
- PQC CRYSTALS core for accelerating NIST FIPS 202 FIPS 203 and FIPS 204
- UCIe Controller baseline for Streaming Protocols for ASIL B Compliant, AEC-Q100 Grade 2
Related White Papers
- Achieving FPGA Design Performance Quickly
- How to tackle serial backplane challenges with high-performance FPGA designs
- Accelerating Architecture Exploration for FPGA Selection and System Design
- How to get more performance in 65 nm FPGA designs
Latest White Papers
- FastPath: A Hybrid Approach for Efficient Hardware Security Verification
- Automotive IP-Cores: Evolution and Future Perspectives
- TROJAN-GUARD: Hardware Trojans Detection Using GNN in RTL Designs
- How a Standardized Approach Can Accelerate Development of Safety and Security in Automotive Imaging Systems
- SV-LLM: An Agentic Approach for SoC Security Verification using Large Language Models