Choosing serial interfaces for high speed ADCs in medical apps
Alison Steer, Linear Technology Corp.
11/30/2012 9:15 AM EST
In medical applications such as MRI, ultrasound, CT scanners, and digital X-ray, high channel count analog-to-digital converters (ADCs) are used to sample large arrays of data.
Serial interfaces are used to acquire the sampled data to reduce the number of pins on the ADC and FPGA, and save board space. With board real estate at a premium and FPGA pins a valuable commodity, the advantages of serial data converter interfaces over parallel are clear. Today, there are two choices of serial interfaces that are suitable for high speed data converters.
The first is a serial clock-data-frame (CDF) interface, which combines a serialized LVDS (low voltage differential signaling) data stream, as well as a differential clock to accurately collect this data and framing clock to establish data sample boundaries.
To read the full article, click here
Related Semiconductor IP
Related White Papers
- Integrating High Speed Serial Transceivers into an FPGA
- Multi-Gigabit SerDes: The Cornerstone of High Speed Serial Interconnects
- High Speed Serial Interconnects - What to Look for When Selecting an IP Vendor
- Verification Challenges of High Speed Interfaces
Latest White Papers
- OmniSim: Simulating Hardware with C Speed and RTL Accuracy for High-Level Synthesis Designs
- Balancing Power and Performance With Task Dependencies in Multi-Core Systems
- LLM Inference with Codebook-based Q4X Quantization using the Llama.cpp Framework on RISC-V Vector CPUs
- PCIe 5.0: The universal high-speed interconnect for High Bandwidth and Low Latency Applications Design Challenges & Solutions
- Basilisk: A 34 mm2 End-to-End Open-Source 64-bit Linux-Capable RISC-V SoC in 130nm BiCMOS