Choosing serial interfaces for high speed ADCs in medical apps
Alison Steer, Linear Technology Corp.
11/30/2012 9:15 AM EST
In medical applications such as MRI, ultrasound, CT scanners, and digital X-ray, high channel count analog-to-digital converters (ADCs) are used to sample large arrays of data.
Serial interfaces are used to acquire the sampled data to reduce the number of pins on the ADC and FPGA, and save board space. With board real estate at a premium and FPGA pins a valuable commodity, the advantages of serial data converter interfaces over parallel are clear. Today, there are two choices of serial interfaces that are suitable for high speed data converters.
The first is a serial clock-data-frame (CDF) interface, which combines a serialized LVDS (low voltage differential signaling) data stream, as well as a differential clock to accurately collect this data and framing clock to establish data sample boundaries.
To read the full article, click here
Related Semiconductor IP
- ADC
- 12-bit ADC on Samsung 8nm LN08LPP
- 12-bit ADC on Samsung 28nm LN28FDS
- 12-bit ADC on Samsung 4nm LN04LPE
- 11-bit, 5 GSPS SAR ADC - GlobalFoundries GF22FDX
Related White Papers
- Integrating High Speed Serial Transceivers into an FPGA
- Multi-Gigabit SerDes: The Cornerstone of High Speed Serial Interconnects
- High Speed Serial Interconnects - What to Look for When Selecting an IP Vendor
- Verification Challenges of High Speed Interfaces
Latest White Papers
- FastPath: A Hybrid Approach for Efficient Hardware Security Verification
- Automotive IP-Cores: Evolution and Future Perspectives
- TROJAN-GUARD: Hardware Trojans Detection Using GNN in RTL Designs
- How a Standardized Approach Can Accelerate Development of Safety and Security in Automotive Imaging Systems
- SV-LLM: An Agentic Approach for SoC Security Verification using Large Language Models