Characterizing licensable core performance; Find out why comparing processor cores is tricky and learn what to look for.

[Editor's note: If you are unfamiliar with the concepts of chip fabrication, the article "Push performance and power beyond the data sheet" provides some useful background.]
Comparing licensable processor cores and quantifying their relative performance is challenging. Unlike processor chips, there are many different ways in which licensable cores can be configured, implemented, and fabricated, each of which yields a different combination of speed, area, and power consumption. Particularly for digital signal processing applications (which tend to push the limits on one or more of these metrics) it's essential to have reliable and accurate performance data.
To make apples-to-apples comparisons between cores you'll need to pin down a consistent set of assumptions. In this article, we'll discuss some of the factors to consider when assessing and comparing licensable cores for digital signal processing.
To read the full article, click here
Related Semiconductor IP
- Process/Voltage/Temperature Sensor with Self-calibration (Supply voltage 1.2V) - TSMC 3nm N3P
- USB 20Gbps Device Controller
- SM4 Cipher Engine
- Ultra-High-Speed Time-Interleaved 7-bit 64GSPS ADC on 3nm
- Fault Tolerant DDR2/DDR3/DDR4 Memory controller
Related White Papers
- Agile Analog's Approach to Analog IP Design and Quality --- Why "Silicon Proven" is NOT What You Think
- Why Interlaken is a great choice for architecting chip to chip communications in AI chips
- Top 5 Reasons why CPU is the Best Processor for AI Inference
- Interstellar: Fully Partitioned and Efficient Security Monitoring Hardware Near a Processor Core for Protecting Systems against Attacks on Privileged Software
Latest White Papers
- Fault Injection in On-Chip Interconnects: A Comparative Study of Wishbone, AXI-Lite, and AXI
- eFPGA – Hidden Engine of Tomorrow’s High-Frequency Trading Systems
- aTENNuate: Optimized Real-time Speech Enhancement with Deep SSMs on RawAudio
- Combating the Memory Walls: Optimization Pathways for Long-Context Agentic LLM Inference
- Hardware Acceleration of Kolmogorov-Arnold Network (KAN) in Large-Scale Systems