Characterizing licensable core performance; Find out why comparing processor cores is tricky and learn what to look for.

[Editor's note: If you are unfamiliar with the concepts of chip fabrication, the article "Push performance and power beyond the data sheet" provides some useful background.]
Comparing licensable processor cores and quantifying their relative performance is challenging. Unlike processor chips, there are many different ways in which licensable cores can be configured, implemented, and fabricated, each of which yields a different combination of speed, area, and power consumption. Particularly for digital signal processing applications (which tend to push the limits on one or more of these metrics) it's essential to have reliable and accurate performance data.
To make apples-to-apples comparisons between cores you'll need to pin down a consistent set of assumptions. In this article, we'll discuss some of the factors to consider when assessing and comparing licensable cores for digital signal processing.
To read the full article, click here
Related Semiconductor IP
- Flexible Pixel Processor Video IP
- Complex Digital Up Converter
- Bluetooth Low Energy 6.0 Digital IP
- Verification IP for Ultra Ethernet (UEC)
- MIPI SWI3S Manager Core IP
Related White Papers
- Agile Analog's Approach to Analog IP Design and Quality --- Why "Silicon Proven" is NOT What You Think
- Why Interlaken is a great choice for architecting chip to chip communications in AI chips
- Top 5 Reasons why CPU is the Best Processor for AI Inference
- Interstellar: Fully Partitioned and Efficient Security Monitoring Hardware Near a Processor Core for Protecting Systems against Attacks on Privileged Software
Latest White Papers
- RISC-V basics: The truth about custom extensions
- Unlocking the Power of Digital Twins in ASICs with Adaptable eFPGA Hardware
- Security Enclave Architecture for Heterogeneous Security Primitives for Supply-Chain Attacks
- relOBI: A Reliable Low-latency Interconnect for Tightly-Coupled On-chip Communication
- Enabling Space-Grade AI/ML with RISC-V: A Fully European Stack for Autonomous Missions