Big.LITTLE processing with ARM Cortex-A15 & Cortex-A7
Peter Greenhalgh, ARM
EETimes (10/24/2011 4:33 PM EDT)
This white paper presents the rationale and design behind the first big.LITTLE system from ARM based on the high-performance Cortex-A15 processor, the energy efficient Cortex-A7 processor, the coherent CCI-400 interconnect and supporting IP.
The range of performance being demanded from modern, high-performance, mobile platforms is unprecedented. Users require platforms to be accomplished at high processing intensity tasks such as gaming and web browsing while providing long battery life for low processing intensity tasks such as texting, e-mail and audio.
In the first big.LITTLE system from ARM a ‘big’ ARM Cortex-A15 processor is paired with a ‘LITTLE’ Cortex-A7 processor to create a system that can accomplish both high intensity and low intensity tasks in the most energy efficient manner. By coherently connecting the Cortex-A15 and Cortex-A7 processors via the CCI-400 coherent interconnect the system is flexible enough to support a variety of big.LITTLE use models, which can be tailored to the processing requirements of the tasks.
To read the full article, click here
Related Semiconductor IP
- USB 4.0 V2 PHY - 4TX/2RX, TSMC N3P , North/South Poly Orientation
- FH-OFDM Modem
- NFC wireless interface supporting ISO14443 A and B with EEPROM on SMIC 180nm
- PQC CRYSTALS core for accelerating NIST FIPS 202 FIPS 203 and FIPS 204
- USB Full Speed Transceiver
Related White Papers
- Graphics processing: When DIY just doesn't make sense
- Reconfiguring Design -> Reconfigurable computing aims at signal processing
- Reconfigurable signal processing key in base station design
- DSPs duel FPGAs for 3G baseband processing chores
Latest White Papers
- FastPath: A Hybrid Approach for Efficient Hardware Security Verification
- Automotive IP-Cores: Evolution and Future Perspectives
- TROJAN-GUARD: Hardware Trojans Detection Using GNN in RTL Designs
- How a Standardized Approach Can Accelerate Development of Safety and Security in Automotive Imaging Systems
- SV-LLM: An Agentic Approach for SoC Security Verification using Large Language Models