How audio processing algorithms help improve sound from small speakers
Luca Cacioli, Portable Audio Marketing Manager, Texas Instruments
EETimes (8/25/2010 11:40 AM EDT)
Audio processing algorithms
A variety of algorithms are available today to process the audio signal and improve the listening experience.
Basic processing is given by equalization and filtering that change the amplitude of different frequency bands to overcome the shortcomings of speakers. By looking at the frequency response of speakers, we can determine what can and cannot be reproduced and set equalization curves accordingly. The goal is to obtain sound with pretty much constant amplitude, no matter what frequency is played through the speaker.
Basic equalization nowadays is pretty common; most audio converters available on the market have it. Unfortunately, in some cases this is not sufficient to improve audio quality. In fact, speakers have frequency responses that change with the intensity of the audio signal (Figure 1).
To read the full article, click here
Related Semiconductor IP
- eUSB2V2.0 Controller + PHY IP
- I/O Library with LVDS in SkyWater 90nm
- 50G PON LDPC Encoder/Decoder
- UALink Controller
- RISC-V Debug & Trace IP
Related Articles
- Writing a modular Audio Post Processing DSP algorithm
- Reconfiguring Design -> Reconfigurable computing aims at signal processing
- Reconfiguring Design -> FPGAs speed audio application development
- Consumer IC Advances -> Meeting MPEG-4 advanced audio coding requirements
Latest Articles
- ChipBench: A Next-Step Benchmark for Evaluating LLM Performance in AI-Aided Chip Design
- COVERT: Trojan Detection in COTS Hardware via Statistical Activation of Microarchitectural Events
- A Reconfigurable Framework for AI-FPGA Agent Integration and Acceleration
- Veri-Sure: A Contract-Aware Multi-Agent Framework with Temporal Tracing and Formal Verification for Correct RTL Code Generation
- FlexLLM: Composable HLS Library for Flexible Hybrid LLM Accelerator Design