The future of Android in vehicles
David Kleidermacher (Green Hills Software) and Brad Ballard (Texas Instruments Inc.)
Android was initially geared for smartphones and tablets but is quickly expanding into automotive and embedded markets. With its open-source flexibility, powerful content delivery system, and consumer device ubiquity, Android is a tempting choice for center stack designs, but presents significant challenges for designers. This article discusses these benefits and challenges, highlighting the importance of marrying in-vehicle infotainment bells and whistles with safety and security mechanisms.
Modern Automotive Electronics
One of the first computer systems in an automobile was the 1978 Cadillac Seville’s trip computer, run by a Motorola 6802 microprocessor with 128 bytes of RAM and two kilobytes of ROM. The printed source code could not have occupied more than a handful of pages. In contrast, today's automobiles contain massive aggregate compute power and millions of lines of code.
To read the full article, click here
Related Semiconductor IP
- 1.8V/3.3V I/O Library with 5V ODIO & Analog in TSMC 16nm
- ESD Solutions for Multi-Gigabit SerDes in TSMC 28nm
- High-Speed 3.3V I/O library with 8kV ESD Protection in TSPCo 65nm
- Verification IP for DisplayPort/eDP
- Wirebond Digital and Analog Library in TSMC 65nm
Related White Papers
- The Future of Embedded FPGAs - eFPGA: The Proof is in the Tape Out
- The Future Of Chip Design
- Paving the way for the next generation of audio codec for True Wireless Stereo (TWS) applications - PART 5 : Cutting time to market in a safe and timely manner
- MIPI in next generation of AI IoT devices at the edge
Latest White Papers
- What tamper detection IP brings to SoC designs
- Analyzing Modern NVIDIA GPU cores
- RISC-V in 2025: Progress, Challenges,and What’s Next for Automotive & OpenHardware
- Leveraging RISC-V as a Unified, Heterogeneous Platform for Next-Gen AI Chips
- Design and implementation of a hardened cryptographic coprocessor for a RISC-V 128-bit core