Programming heterogeneous multiprocessors
By Steve Preissig, Texas Instruments , Courtesy of DSP DesignLine
Aug 23 2006 (22:25 PM)
You may find that your best time to market, cost, and performance will come from a heterogeneous processor architecture—that is, a processor that includes both general-purpose processor (GPP) and digital signal processor (DSP) cores. Combining two or more processors into your design allows you to draw on the strengths of both, increasing your overall efficiency. Such a design, however, introduces new challenges to the software designer. How will you partition the system for optimal loading levels between the processors? How will you perform scheduling on independent processors to ensure dependent activities are executed in order and with the lowest latency? And how can you optimize inter-processor communications so that the computational benefits of a heterogeneous design are not lost to data-transfer overhead?
In this article, we will examine how to program a heterogeneous processor architecture based on the proven method of the Remote Procedure Call (RPC). We will examine how this method addresses the concerns listed above. We also explain how the RPC introduces some pitfalls, and show how they may be avoided.
To read the full article, click here
Related Semiconductor IP
- Root of Trust (RoT)
- Fixed Point Doppler Channel IP core
- Multi-protocol wireless plaform integrating Bluetooth Dual Mode, IEEE 802.15.4 (for Thread, Zigbee and Matter)
- Polyphase Video Scaler
- Compact, low-power, 8bit ADC on GF 22nm FDX
Related White Papers
- Programming heterogeneous multicore embedded SoCs
- The Hitchhiker's Guide to Programming and Optimizing CXL-Based Heterogeneous Systems
- Embedded Systems: Programmable Logic -> Programming enters designer's core
- Tools For Reprogrammability -> Reuse forces embedded programming
Latest White Papers
- Reimagining AI Infrastructure: The Power of Converged Back-end Networks
- 40G UCIe IP Advantages for AI Applications
- Recent progress in spin-orbit torque magnetic random-access memory
- What is JESD204C? A quick glance at the standard
- Open-Source Design of Heterogeneous SoCs for AI Acceleration: the PULP Platform Experience