PowerSoC solves switch-mode DCDC noise and space issues
Michael Laflin, Enpirion, and Austin Lesea, Xilinx
EETimes (2/5/2012 5:00 PM EST)
Introduction
Conversion efficiency is driving FPGA system designers away from the use of linear regulators and toward the use of switch mode DCDC converters. While switch-mode DCDCs offer dramatic increases in efficiency, they also require a much more complex design, increase part count and footprint, and most significantly for high-speed IO, switch-mode DCDC converters are a source of noise.
This article describes the various components of noise in a switch-mode DCDC converter and demonstrates how PowerSoCs can minimize those components. The article further shows design examples and demonstrates how PowerSoCs can power high speed IO with performance equivalent to or better than Linear Regulators.
Related Semiconductor IP
- 3.3V to 1.8V and 0.9V step-down DC-DC converter
- Low-quiescent DC/DC converter in TSMC 22ULL
- Nano power DC-DC converter in TSMC 22ULL with ultra-low quiescent current and high efficiency at light load
- Nano power DC-DC converter in TSMC 22ULL with ultra-low quiescent current and high efficiency at light load
- Nano power DC-DC converter in TSMC 22ULL with ultra-low quiescent current and high efficiency at light load
Related White Papers
- How to simplify switch-mode DC-DC converter design
- Guide to Choosing the Best DCDC Converter for Your Application
- Understanding Efficiency of Switched Capacitor DC-DC Converters for Battery-Powered Applications
- LVDS ups A/D converter data rates
Latest White Papers
- New Realities Demand a New Approach to System Verification and Validation
- How silicon and circuit optimizations help FPGAs offer lower size, power and cost in video bridging applications
- Sustainable Hardware Specialization
- PCIe IP With Enhanced Security For The Automotive Market
- Top 5 Reasons why CPU is the Best Processor for AI Inference