Optimize your DSPs for power and performance
January 04, 2007 -- dspdesignline.com
The ever-growing demand for rich, multimedia signal processing in mobile devices raises a chronic technology challenge. The challenge is to squeeze higher functionality and performance within increasingly tighter power and space constraints. As a result, power-performance metrics are now a central concern in DSP design. New methods have been devised enabling designers to address the main areas of power consumption— namely leakage power, clock trees, logic transitions, and power grids— to significantly improve performance compared to conventional techniques.
In today's CMOS technology, power is consumed in two basic ways: statically and dynamically. Static power is consumed continuously—even during standby operation—through various leakage mechanisms. Dynamic power is consumed only during activity, such as logic and interface operations.
Related Semiconductor IP
- AES GCM IP Core
- High Speed Ethernet Quad 10G to 100G PCS
- High Speed Ethernet Gen-2 Quad 100G PCS IP
- High Speed Ethernet 4/2/1-Lane 100G PCS
- High Speed Ethernet 2/4/8-Lane 200G/400G PCS
Related White Papers
- Calibrate and Configure your Power Management IC with NVM IP
- Optimize performance and power consumption with DSP hardware, software
- SystemC: Key modeling concepts besides TLM to boost your simulation performance
- Using FPGAs to improve your wireless subsystem's performance
Latest White Papers
- New Realities Demand a New Approach to System Verification and Validation
- How silicon and circuit optimizations help FPGAs offer lower size, power and cost in video bridging applications
- Sustainable Hardware Specialization
- PCIe IP With Enhanced Security For The Automotive Market
- Top 5 Reasons why CPU is the Best Processor for AI Inference