MBIST verification: Best practices & challenges
Abhilash Kaushal & Kartik Kathuria (Freescale)
EDN (July 25, 2014)
Embedded memories are an indispensable part of any deep submicron System on a Chip (SoC). The requirement arises not only to validate the digital logic against manufacturing defects but also do robust testing of large memory blocks post-manufacturing. MBIST (Memory built-in self-test) provides an effective solution for testing of such large memories. Verification of functioning MBIST is an essential part in any SoC design cycle, as it enables the designer to detect beforehand any issues related to MBIST. The main focus of this paper is to discuss the general issues faced, and best practices to be followed, during MBIST Verification.
MBIST is a self test logic that generates effective set of March Algorithms through inbuilt clock, data and address generator and read/write controller to detect possibly all faults that could be present inside a typical RAM cell whether it is stuck at 0/1 or slow to rise, slow to fall transition faults or coupling faults.
Related Semiconductor IP
- JESD204D Transmitter and Receiver IP
- 100G UDP IP Stack
- Frequency Synthesizer
- Temperature Sensor IP
- LVDS Driver/Buffer
Related White Papers
- SoC designers describe their 'best practices'
- Best Practices for a Reusable Verification Environment
- Using software IP: best practices for embedded systems design
- Verification challenges of ADC subsystem integration within an SoC
Latest White Papers
- New Realities Demand a New Approach to System Verification and Validation
- How silicon and circuit optimizations help FPGAs offer lower size, power and cost in video bridging applications
- Sustainable Hardware Specialization
- PCIe IP With Enhanced Security For The Automotive Market
- Top 5 Reasons why CPU is the Best Processor for AI Inference