High-Speed Board Layout Challenges in FPGA/SDI Sub-Systems
By Tsun-Kit Chin, National Semiconductor Corp.
pldesignline.com (November 18, 2009)
Introduction
Television and cinema have entered the digital age. Video pictures are used to transport at standard definition rate (270 Mb/s), upgraded to high definition rate (1.485 Gb/s), and are now migrating to 3 Gb/s. The migration to higher speeds enables higher resolution images for entertainment, but it also presents challenges to hardware engineers and physical layout designers. Many video systems are implemented with feature-rich FPGA and multi-rate SDI integrated circuits that support high performance professional video transport over long distances. FPGAs demand high density routing with fine trace width while high-speed analog SDI routing demands impedance matching and signal fidelity. This paper outlines the layout challenges facing hardware engineers and provides recommendations for dealing with these challenges.
To read the full article, click here
Related Semiconductor IP
- NFC wireless interface supporting ISO14443 A and B with EEPROM on SMIC 180nm
- DDR5 MRDIMM PHY and Controller
- RVA23, Multi-cluster, Hypervisor and Android
- CXL 3.0 Controller
- ECC7 Elliptic Curve Processor for Prime NIST Curves
Related White Papers
- Consumer IC Advances -> Set- top box SoC ready for high-speed demands
- IC Physical Design: Portable Layout and Simulation Technigues for ADSL Analog Devices
- Chip, board designers differ on preferences, concerns
- Layout compaction accelerates SoC design through hard IP reuse
Latest White Papers
- TROJAN-GUARD: Hardware Trojans Detection Using GNN in RTL Designs
- How a Standardized Approach Can Accelerate Development of Safety and Security in Automotive Imaging Systems
- SV-LLM: An Agentic Approach for SoC Security Verification using Large Language Models
- Enabling Chiplet Design Through Automation and Integration Solutions
- Shift-Left Verification: Why Early Reliability Checks Matter