Embedded Systems: Programmable Logic -> Embarrassment of riches hinders proper use of Moore's Law
Embarrassment of riches hinders proper use of Moore's Law
By Paul Master, EE Times
February 16, 2001 (1:17 p.m. EST)
URL: http://www.eetimes.com/story/OEG20010216S0035
Moore's Law came into being in the mid-1960s, courtesy of Intel Corp.'s co-founder, Gordon Moore. In effect, Moore's Law stated that every two years die geometries shrink to where the number of transistors available on a given die size doubles. A corollary is that clock speeds go faster and performance gains increase. During the advent of microprocessors in the late '60s and early '70s, followed by the arrival of the digital signal processor, chip designers had to work with an interesting design constraint. They could put only a small and limited number of gates on a die. Their task, therefore, was to develop architectures that used few gates efficiently, and this they did. Over time, more and more gates became available to these traditional chip designers. Armed with the extra gates, chip designers enhanced their microprocessor and DSP designs with larger on-chip caches, more registers and wider data and instruction buses. At the same time , more complex instruction coding was used to reduce clock cycles down to one, and then to increase the number of simultaneous instructions being executed. These chip engineers designed architectures (microprocessor, DSP and the like) that mated well with the limited number of gates available at the time. Since the outset of this architectural concept, however, there has been a perennial trade-off: System designers are continuing to use processor architectures that were originally designed to efficiently use limited amounts of silicon. The basis of this penalty is that only a small percentage of the total gates in a chip at any given time are used to solve a problem. Generally only about 5 percent of the gates in a processor are actually used to solve a given task. The rest is overhead needed to keep the small number of "working" gates operational.
Related Semiconductor IP
- USB 4.0 V2 PHY - 4TX/2RX, TSMC N3P , North/South Poly Orientation
- FH-OFDM Modem
- NFC wireless interface supporting ISO14443 A and B with EEPROM on SMIC 180nm
- PQC CRYSTALS core for accelerating NIST FIPS 202 FIPS 203 and FIPS 204
- UCIe Controller baseline for Streaming Protocols for ASIL B Compliant, AEC-Q100 Grade 2
Related White Papers
- How Low Can You Go? Pushing the Limits of Transistors - Deep Low Voltage Enablement of Embedded Memories and Logic Libraries to Achieve Extreme Low Power
- Role of Embedded Systems and its future in Industrial Automation
- From I2C to I3C: Evolution of Two-Wire Communication in Embedded Systems
- Embedded Systems: Programmable Logic -> Adaptive tech extends Moore's Law
Latest White Papers
- FastPath: A Hybrid Approach for Efficient Hardware Security Verification
- Automotive IP-Cores: Evolution and Future Perspectives
- TROJAN-GUARD: Hardware Trojans Detection Using GNN in RTL Designs
- How a Standardized Approach Can Accelerate Development of Safety and Security in Automotive Imaging Systems
- SV-LLM: An Agentic Approach for SoC Security Verification using Large Language Models