Deliver "Smarter" Faster: Design Methodology for AI/ML Processor Design
By Joe Sawicki, executive vice president of IC EDA division, Mentor
EETimes (June 19, 2019)
New design tools can develop circuits for AI and machine learning faster than ever. AI/ML is being used to make those same design tools even faster.
We are at the beginning of an age where artificial intelligence (AI) processing will advance in sophistication rapidly and become ubiquitous. While the concept of AI — giving machines the ability to mimic cognitive functions to learn and solve problems and then take an action — has been an academic discipline since the mid-1950s, it wasn’t until the last five years that AI processing, mostly in the form of machine learning (ML), could step out of the dimly-lit halls of research and supercomputer one-offs and move to practical everyday use. Why?
The amount of data generated from the internet and billions of smart devices alone has given us more than enough data to collect sizable data sets with which we can have ML filter and train ML-based systems to use. In addition, today we have enough ubiquitous high-performance compute power in smart devices and the high-bandwidth communications infrastructure to process and transfer massive data sets quickly. This compute power also gives us the canvas to develop ever more sophisticated and specialized algorithms for particular tasks, further expanding the application of AI/ML.
To read the full article, click here
Related Semiconductor IP
- NPU IP Core for Mobile
- NPU IP Core for Edge
- Specialized Video Processing NPU IP
- HYPERBUS™ Memory Controller
- AV1 Video Encoder IP
Related White Papers
- Dynamic Margining: The Minima Approach to Near-threshold Design
- Formal-based methodology cuts digital design IP verification time
- VLSI Physical Design Methodology for ASIC Development with a Flavor of IP Hardening
- Serial Peripheral Interface. SPI, these three letters denote everything you asked for
Latest White Papers
- Breaking the Memory Bandwidth Boundary. GDDR7 IP Design Challenges & Solutions
- Automating NoC Design to Tackle Rising SoC Complexity
- Memory Prefetching Evaluation of Scientific Applications on a Modern HPC Arm-Based Processor
- Nine Compelling Reasons Why Menta eFPGA Is Essential for Achieving True Crypto Agility in Your ASIC or SoC
- CSR Management: Life Beyond Spreadsheets