Five steps to reliable, low-cost, bug-free software with static code analysis
Nikola Valerjev, Green Hills Software
(July 05, 2014)
Numerous studies have shown increases in software code reliability and developer efficiency through the use of static source analysis. There is no dispute that there are large benefits to be gained for most organizations.
One problem is that there are no standards that specify what static source analysis means, or what types of defects it should be detecting. Several government agencies, including Department Of Homeland Security, National Institute of Standards and Technology, and FDA have been trying to develop a set of guidelines and recommendations to specify exactly that, but there has been no clear solution as of yet.
One of the fundamental issues has been the difficulty in defining what defects need to be detected and at what rates. However, that doesn’t take away from the fact that static source analysis has been proven as an extremely effective way to solve many issues that software developers are faced with.
With so many choices and no standards, a new problem arises: How do you pick a static analysis tool that is right for your organization?
To read the full article, click here
Related Semiconductor IP
- PUF FPGA-Xilinx Premium with key wrap
- ASIL-B Ready PUF Hardware Premium with key wrap and certification support
- ASIL-B Ready PUF Hardware Base
- PUF Software Premium with key wrap and certification support
- PUF Hardware Premium with key wrap and certification support
Related White Papers
- Building more secure embedded software with code coverage analysis
- Practical Applications of Statistical Static Timing Analysis
- Source Code Analysis in an Agile World
- Making source code analysis part of the software development process
Latest White Papers
- e-GPU: An Open-Source and Configurable RISC-V Graphic Processing Unit for TinyAI Applications
- How to design secure SoCs, Part II: Key Management
- Seven Key Advantages of Implementing eFPGA with Soft IP vs. Hard IP
- Hardware vs. Software Implementation of Warp-Level Features in Vortex RISC-V GPU
- Data Movement Is the Energy Bottleneck of Today’s SoCs