What next for microcontrollers?
Viewing the migration from 8- and 16-bit to 32-bit MCUs from the perspective of the ARM architecture
By Joseph Yiu, ARM
Embedded.com (01/05/10, 09:41:00 AM EST)
The embedded world is constantly changing. You might not have noticed, but if you take a minute to recall what a microcontroller system was like 10 years ago and compare it to today's latest microcontroller systems, you will find that PCB design, component packages, level of integration, clock speed, and memory size have all going through several generations of change.
One of the hottest topics in this area is when will the last of remaining 8-bit microcontroller users start to move away from legacy architectures and move to modern 32-bit processor architectures like the ARM Cortex-M based microcontroller family.
Over the last few years there has been a strong momentum of embedded developers starting the migration to 32-bit microcontrollers and, in this multi-part article, we will take a look at some of the factors accelerating this migration.
In the first part of this article we will summarize as to why embedded developers should consider moving to the 32-bit microcontrollers.
To read the full article, click here
Related Semiconductor IP
- Root of Trust (RoT)
- Fixed Point Doppler Channel IP core
- Multi-protocol wireless plaform integrating Bluetooth Dual Mode, IEEE 802.15.4 (for Thread, Zigbee and Matter)
- Polyphase Video Scaler
- Compact, low-power, 8bit ADC on GF 22nm FDX
Related White Papers
- Criteria for ARM Migration as the Industry Standard MCU
- Microcontroller Applications -> 'Internetworking' treads on MCU turf
- Microcontroller Applications -> Connectivity invigorates MCU designs
- Microcontroller Applications -> Software vital in Net-linked MCU apps
Latest White Papers
- Reimagining AI Infrastructure: The Power of Converged Back-end Networks
- 40G UCIe IP Advantages for AI Applications
- Recent progress in spin-orbit torque magnetic random-access memory
- What is JESD204C? A quick glance at the standard
- Open-Source Design of Heterogeneous SoCs for AI Acceleration: the PULP Platform Experience