Argument for anti-fuse non-volatile memory in 28nm high-K metal gate
Andre Hassan, Kilopass Technology Inc.
EETimes (10/15/2011 1:17 PM EDT)
With 28nm high-K metal Gate (HKMG) semiconductor production ramping in 2012, system-on-chip (SoC) designers are presented with the silicon real estate and economic incentive to integrate more functionality on-chip. One function that continues to be challenging for on-chip integration is non-volatile memory (NVM) despite its many advantages. At smaller process geometries, especially 28nm HKMG, the challenges to integrating NVM such as flash, pseudo flash, and e-fuse are effectively addressed with an anti-fuse solution.
To read the full article, click here
Related Semiconductor IP
- NVM OTP in Huali (40nm, 28nm)
- NVM OTP in Tower (180nm, 110nm)
- NVM OTP in GF (180nm, 130nm, 65nm, 55nm, 40nm, 28nm, 22nm, 12nm)
- NVM MTP in Samsung (130nm)
- NVM MTP in GF (180nm, 55nm)
Related White Papers
- Anti-fuse memory provides robust, secure NVM option
- Gate arrays getting a new lease on life
- Embattled gate array players pull out an ace
- Hardware-assisted verification gate counts soar
Latest White Papers
- Boosting RISC-V SoC performance for AI and ML applications
- e-GPU: An Open-Source and Configurable RISC-V Graphic Processing Unit for TinyAI Applications
- How to design secure SoCs, Part II: Key Management
- Seven Key Advantages of Implementing eFPGA with Soft IP vs. Hard IP
- Hardware vs. Software Implementation of Warp-Level Features in Vortex RISC-V GPU