Does Your AI Chip Have Its Own DNN?
By Junko Yoshida, EETimes
August 25, 2019
For AI accelerators in the race to achieve optimum accuracy at minimum latency, especially in autonomous vehicles (AVs), teraflops have become the key element in many so-called brain chips. The contenders include Nvidia’s Xavier SoC, Mobileye’s EyeQ5, Tesla’s Full Self-Driving computer chip and NXP-Kalray chips.
In an exclusive interview with EE Times last week, Forrest Iandola, CEO of DeepScale, explained why this sort of brute-force processing approach is unsustainable, and said many of the assumptions common among AI hardware designers are outdated. As AI vendors gain more experience with more AI applications, it's becoming evident to him that different AI tasks are starting to require different technological approaches. If that's true, the way that AI users buy AI technology is going to change, and vendors are going to have to respond.
Rapid advancements in neural architecture search (NAS), for example, can make the search for optimized deep neural networks (DNN) faster and much cheaper, Iandola argued. Instead of relying on bigger chips to process all AI tasks, he believes there is a way “to produce the lowest-latency, highest-accuracy DNN on a target task and a target computing platform.”
To read the full article, click here
Related Semiconductor IP
- Xtal Oscillator on TSMC CLN7FF
- Wide Range Programmable Integer PLL on UMC L65LL
- Wide Range Programmable Integer PLL on UMC L130EHS
- Wide Range Programmable Integer PLL on TSMC CLN90G-GT-LP
- Wide Range Programmable Integer PLL on TSMC CLN80GC
Related News
- Does Huawei have its eye on Nokia?
- Does NVMe Have a Place in Industrial Embedded and IoT?
- Does China Have Imagination?
- SambaNova Unveils New AI Chip, the SN40L, Powering its Full Stack AI Platform
Latest News
- RaiderChip NPU for LLM at the Edge supports DeepSeek-R1 reasoning models
- The world’s first open source security chip hits production with Google
- ZeroPoint Technologies Unveils Groundbreaking Compression Solution to Increase Foundational Model Addressable Memory by 50%
- Breker RISC-V SystemVIP Deployed across 15 Commercial RISC-V Projects for Advanced Core and SoC Verification
- AheadComputing Raises $21.5M Seed Round and Introduces Breakthrough Microprocessor Architecture Designed for Next Era of General-Purpose Computing