Attopsemi Published a Paper in ICMTS 2016, Yokohama, Japan
Hsinchu, Taiwan – May 2, 2016 – Attopsemi published a paper “Ultra-small and Ultra-reliable Innovative Fuse Scalable from 0.35um to 28nm” in 2016 International Conference on Microelectronic Test Structures (ICMTS). ICMTS was held in March 28 to 31, 2016 in Yokohama Japan and is the only conference dedicated to semiconductor test structures.
In the well-received paper, Attopsemi showed her I-fuse™, a fuse-based OTP, is programmed below a critical current. Based on collected data from 0.35um to 28nm fabricated with different materials such as WSi2, TiSi2, CoSi2, NiSi, and metal gates, the critical current is proven as the on-set of thermal run away. If a fuse is programmed below the critical current, the programming behavior is deterministic, controllable, and can be modeled precisely by physical laws as heat generation and dissipation. On the other hand, if a fuse is programmed above the critical current, as the conventional eFuse does, the programming behavior is like an explosion. The debris created after explosion can micro-bridge again and becomes shorts to cause long term reliability issues. Programmed below the critical current, I-fuse™ can easily pass the conventional 150oC HTS and 125oC HTOL for 1,000 hours, Moreover, I-fuse™ showed the OTP can pass 300oC for 4,290 hours with less than 10% of cell current changes.
Please refer to the following links for more information.
http://www.if.t.u-tokyo.ac.jp:8080/program#Memories
About Attopsemi Technology
Founded in 2010, Attopsemi Technology is dedicated to developing and licensing fuse-based One-Time Programmable (OTP) IP to all CMOS process technologies from 0.7um to 7nm and beyond with various silicided polysilicon and HKMG technologies. Attopsemi provides the best possible OTP solutions for all merits in small size, high quality, high reliability, low power, high speed, wide temperature and high data security. Attopsemi's proprietary I-fuse™ OTP technologies have been proven in numerous CMOS technologies and in several silicon foundries.
Related Semiconductor IP
- 1-port Receiver or Transmitter HDCP 2.3 on HDMI 2.1 ESM
- HDMI 2.0/MHL RX Combo 1P PHY 6Gbps in TSMC 28nm HPC 1.8V, North/South Poly Orientation
- HDMI 2.0 RX PHY in SS 8LPP 1.8V, North/South Poly Orientation
- HDMI 2.0 RX Controller with HDCP
- HDMI 2.0 RX 4P PHY 6Gbps in TSMC 28nm HPM 1.8V, North/South Poly Orientation
Related News
- Elliptic Technologies To Showcase Security Solutions At The Embedded Technology 2011 Conference In Yokohama, Japan
- Innotech represents Cosmic Circuits in TSMC Symposium in Yokohama, Japan on 29th June 2012
- Attopsemi Technology Attended 4th Japan SOI Symposium and Presented a Talk "I-fuse: A Disruptive OTP Technology"
- ARM Appoints Andor as New Tools Partner in Japan; Move Further Strengthens Global Network of Distributors
Latest News
- Andes Technology Collaborates with Lauterbach to Deliver RISC-V Trace Solution
- Siliconally Releases SinglePHY 100BASE-T1 22FDX, an Automotive Ethernet PHY IP
- Alphawave Semi Drives Innovation in Hyperscale AI Accelerators with Advanced I/O Chiplet for Rebellions Inc
- sureCore now licensing its CryoMem range of IP for Quantum Computing
- GlobalFoundries and IDEMIA Secure Transactions to Enable Next-Generation Smart Card IC on GF 28ESF3 Platform