Why Low-Level Libraries are the Key to AI Success
Let’s start with…. the end.
The old saying, "you get out, what you put in”, is possibly the easiest way to summarise the sentiment of the next few paragraphs as we introduce Imagination’s new OpenCL™ compute libraries. If you have no time to read further, just take away the message that we’ve been able to squeeze a lot more compute and AI performance out of the GPU because we have put a lot of work into the careful design of these new software libraries, so that our customers don’t have to.
For some customers this is everything they need from an out-of-box experience to get the job done. For other customers, particularly those who are developing their own custom libraries/kernels, Imagination’s compute libraries, along with supporting collateral and tools, are the perfect starting point to success in their development and performance goals.
The end.
And for those who felt that ended too soon….
To read the full article, click here
Related Semiconductor IP
- NFC wireless interface supporting ISO14443 A and B with EEPROM on SMIC 180nm
- DDR5 MRDIMM PHY and Controller
- RVA23, Multi-cluster, Hypervisor and Android
- HBM4E PHY and controller
- LZ4/Snappy Data Compressor
Related Blogs
- Why UCIe is Key to Connectivity for Next-Gen AI Chiplets
- What are AI Chips? A Comprehensive Guide to AI Chip Design
- Synopsys and Alchip Collaborate to Streamline the Path to Multi-die Success with Soft Chiplets
- How Chip Startups Are Changing the Way Chips Are Designed
Latest Blogs
- lowRISC Tackles Post-Quantum Cryptography Challenges through Research Collaborations
- How to Solve the Size, Weight, Power and Cooling Challenge in Radar & Radio Frequency Modulation Classification
- Programmable Hardware Delivers 10,000X Improvement in Verification Speed over Software for Forward Error Correction
- The Integrated Design Challenge: Developing Chip, Software, and System in Unison
- Introducing Mi-V RV32 v4.0 Soft Processor: Enhanced RISC-V Power