Why we've created a safety-critical driver for automotive GPU acceleration
As we saw earlier this year at CES 2020, when it comes to automotive, the future is rushing to meet us. Large, high-resolution displays with sophisticated graphics will soon become the default, even on entry-level vehicles. Whether it’s a single, large tablet-like device or an ultra-wide display, screens will be dominant in next-generation cars. To command consumer attention and help differentiate their cars from competitors, manufacturers will need these displays to be sophisticated and visually arresting 3D displays – and this will require, highly performant, low-power GPUs.
However, when building a modern vehicle, all parts of the system need to be considered and designed against the applicable regulatory, safety and quality standards, which in the automotive space is ISO 26262. As well as the hardware itself, this includes software; from the tooling framework vendors and the operating systems, to the APIs and the drivers that talk to the hardware.
To read the full article, click here
Related Semiconductor IP
- xSPI Multiple Bus Memory Controller
- MIPI CSI-2 IP
- PCIe Gen 7 Verification IP
- WIFI 2.4G/5G Low Power Wakeup Radio IP
- Radar IP
Related Blogs
- Unveiling XS: the ultimate GPU family for automotive
- Arm Mali-G78AE becomes world's first fully certified automotive grade GPU
- Cortex-M23: Now Enhanced for Safety-critical Automotive Applications
- What Lies Ahead for the Automotive Industry in 2024
Latest Blogs
- The Growing Importance of PVT Monitoring for Silicon Lifecycle Management
- Unlock early software development for custom RISC-V designs with faster simulation
- HBM4 Boosts Memory Performance for AI Training
- Using AI to Accelerate Chip Design: Dynamic, Adaptive Flows
- Locking When Emulating Xtensa LX Multi-Core on a Xilinx FPGA