Why we've created a safety-critical driver for automotive GPU acceleration
As we saw earlier this year at CES 2020, when it comes to automotive, the future is rushing to meet us. Large, high-resolution displays with sophisticated graphics will soon become the default, even on entry-level vehicles. Whether it’s a single, large tablet-like device or an ultra-wide display, screens will be dominant in next-generation cars. To command consumer attention and help differentiate their cars from competitors, manufacturers will need these displays to be sophisticated and visually arresting 3D displays – and this will require, highly performant, low-power GPUs.
However, when building a modern vehicle, all parts of the system need to be considered and designed against the applicable regulatory, safety and quality standards, which in the automotive space is ISO 26262. As well as the hardware itself, this includes software; from the tooling framework vendors and the operating systems, to the APIs and the drivers that talk to the hardware.
To read the full article, click here
Related Semiconductor IP
- Root of Trust (RoT)
- Fixed Point Doppler Channel IP core
- Multi-protocol wireless plaform integrating Bluetooth Dual Mode, IEEE 802.15.4 (for Thread, Zigbee and Matter)
- Polyphase Video Scaler
- Compact, low-power, 8bit ADC on GF 22nm FDX
Related Blogs
- Unveiling XS: the ultimate GPU family for automotive
- Arm Mali-G78AE becomes world's first fully certified automotive grade GPU
- Cortex-M23: Now Enhanced for Safety-critical Automotive Applications
- What Lies Ahead for the Automotive Industry in 2024
Latest Blogs
- Cadence Announces Industry's First Verification IP for Embedded USB2v2 (eUSB2v2)
- The Industry’s First USB4 Device IP Certification Will Speed Innovation and Edge AI Enablement
- Understanding Extended Metadata in CXL 3.1: What It Means for Your Systems
- 2025 Outlook with Mahesh Tirupattur of Analog Bits
- eUSB2 Version 2 with 4.8Gbps and the Use Cases: A Comprehensive Overview