Seeing what's not there. IMG Series 4 NNA meets Visidon's deep-learning-based Super Resolution technology
Last year I read a fascinating article on LinkedIn about using deep-learning-based super-resolution networks to increase the apparent detail contained in images and videos sent back by Nasa’s Perseverance Rover. This article got me thinking about how, when I first watched Blade Runner in the 90s, scenes such as “enhance 15 to 23” seemed so implausible based on the technology available at that time. At that point (and because of films like Blade Runner) I was embarking on a three-year degree course in artificial intelligence and I could not have predicted the impact of the deep learning revolution at the start of the millennium. You can’t add what isn’t there, I kept saying to myself. But now, it seems, you can – and it’s extremely convincing.
To read the full article, click here
Related Semiconductor IP
- LPDDR6/5X/5 PHY V2 - Intel 18A-P
- MIPI SoundWire I3S Peripheral IP
- P1619 / 802.1ae (MACSec) GCM/XTS/CBC-AES Core
- LPDDR6/5X/5 Controller IP
- Post-Quantum ML-KEM IP Core
Related Blogs
- Imagination China sees 2020 out in award-winning style with IMG Series 4 NNA
- Efficient inference on IMG Series4 NNAs
- Intel vs. ARM: In the Smartphone Era (Part 4)
- 4 Billion CEVA powered Chips shipped (to be noticed: chips, not cores)
Latest Blogs
- ML-DSA explained: Quantum-Safe digital Signatures for secure embedded Systems
- Efficiency Defines The Future Of Data Movement
- Why Standard-Cell Architecture Matters for Adaptable ASIC Designs
- ML-KEM explained: Quantum-safe Key Exchange for secure embedded Hardware
- Rivos Collaborates to Complete Secure Provisioning of Integrated OpenTitan Root of Trust During SoC Production