ETAS and Rambus Offer Integrated Software and Hardware Security Solution for Automotive Silicon Designs
The automotive industry is undergoing an exciting transformation towards the software-defined vehicle (SDV) that will enable a new era of customer-centric mobility and create new business opportunities and revenue streams for automotive stakeholders. However, this transformation comes with its own set of challenges that demand revolutionary approaches to navigate the ever-increasing complexity, while at the same time meeting faster time to market (TTM) demands and regulatory safety and security compliance for market access.
One such approach is strategic collaborations within the automotive ecosystem, like the one ETAS and Rambus recently announced to co-develop and provide a bundled cybersecurity solution. We are excited to share more details about this unique, pre-integrated, and pre-validated solution that unites Rambus hardware and ETAS software expertise to create a secure enclave on next-generation automotive silicon designs. But first, let’s look at how we got here.
Automotive System-on-Chip (SoC) Challenges
Automotive-grade SoCs have evolved significantly in the last decade from microcontroller-based chips to more advanced and complex microprocessor-based SoCs. This evolution is a response to the never-ending demands for greater computing to fulfill different use cases and enhance customer experiences. The progression in hardware architecture has enabled greatly increased functionality such as Advanced Driver-Assistance Systems (ADAS), automation, E/E vehicle architecture transformation, and much more, to realize the software-defined vehicle (SDV). This technological evolution at the SoC level is opening a new era in the automotive industry, but it also comes with challenges. One of the critical challenges is the diverse and heterogenous architecture of these SoCs with multiple computing islands for different applications. This diversity in the hardware architecture is making security implementations more complex and integration more time consuming for automotive OEMs and Tier 1 system engineering teams.
To read the full article, click here
Related Semiconductor IP
- Root of Trust (RoT)
- Fixed Point Doppler Channel IP core
- Multi-protocol wireless plaform integrating Bluetooth Dual Mode, IEEE 802.15.4 (for Thread, Zigbee and Matter)
- Polyphase Video Scaler
- Compact, low-power, 8bit ADC on GF 22nm FDX
Related Blogs
- ETAS and Rambus Plan Joint Development of Automotive Cybersecurity Solutions
- AI Based Software Designing AI Based Hardware - Autonomous Automotive SoC Platform
- Rambus CryptoManager Root of Trust Cores Certified ASIL-B/D Ready for Enhanced Security in Automotive Applications
- Rambus and the OCP: Tackling Cloud Data Security with a Hardware Root of Trust
Latest Blogs
- Cadence Announces Industry's First Verification IP for Embedded USB2v2 (eUSB2v2)
- The Industry’s First USB4 Device IP Certification Will Speed Innovation and Edge AI Enablement
- Understanding Extended Metadata in CXL 3.1: What It Means for Your Systems
- 2025 Outlook with Mahesh Tirupattur of Analog Bits
- eUSB2 Version 2 with 4.8Gbps and the Use Cases: A Comprehensive Overview