Reduce Metastability With User Grey Cell-Based CDC Analysis
Shakeel Jeeawoody, Blue Pearl Software
EETimes (2/19/2014 04:38 PM EST)
In this column, I'd like to introduce a novel technique for Intellectual Property (IP) and FPGA/ASIC clock domain crossing (CDC) analysis using a Grey Cell methodology rather than the traditional Black Box methodology.
The growth of IP-based design
As design complexity escalates, designers increasingly rely on commercial or existing IPs to meet project deadlines rather than designing everything from scratch. According to Semico Research, over the next couple of years, the number of IPs per design will increase from an average of 50 to a staggering 180.
The difficulty of IP integration and design verification will undoubtedly grow exponentially. Even today, many design teams complain that it takes too long for integration and verification using existing methodologies. Just imagine the resulting dreadful situations as the number of IPs per design goes up. To alleviate these types of issues, EDA vendors need to provide breakthrough methodologies. Previously, Blue Pearl Software introduced the Grey Cell methodology, which was discussed at DAC 2012 and elaborated on in EETimes.
With the recently introduced User Grey Cell methodology, Blue Pearl enables IP providers and FPGA designers to reduce the risk of missing CDC issues. In this paper, we illustrate how the recently introduced patent-pending User Grey Cell methodology reduces metastability.
To read the full article, click here
Related Semiconductor IP
- HBM4 PHY IP
- Ultra-Low-Power LPDDR3/LPDDR2/DDR3L Combo Subsystem
- MIPI D-PHY and FPD-Link (LVDS) Combinational Transmitter for TSMC 22nm ULP
- HBM4 Controller IP
- IPSEC AES-256-GCM (Standalone IPsec)
Related Articles
- Solving the toughest problems in CDC analysis
- Efficient analysis of CDC violations in a million gate SoC, part 1
- Efficient analysis of CDC violations in a million gate SoC, part 2
- LTE Single Carrier DFT: Faster Circuits with Reduced FPGA LUT/Register Usage
Latest Articles
- A 14ns-Latency 9Gb/s 0.44mm² 62pJ/b Short-Blocklength LDPC Decoder ASIC in 22FDX
- Pipeline Stage Resolved Timing Characterization of FPGA and ASIC Implementations of a RISC V Processor
- Lyra: A Hardware-Accelerated RISC-V Verification Framework with Generative Model-Based Processor Fuzzing
- Leveraging FPGAs for Homomorphic Matrix-Vector Multiplication in Oblivious Message Retrieval
- Extending and Accelerating Inner Product Masking with Fault Detection via Instruction Set Extension