Implementation basics for autonomous driving vehicles
By Jan Pantzar (VSORA) and Lauro Rizzatti
The automotive industry is delivering the first implementations of advanced driver-assistance systems (ADAS) for Level 2 (foot off the gas or break) and Level 3 (hands off the wheel) vehicles. Though it’s struggling to develop an autonomous driving (AD) system from L4 (eyes off the road) to L5 (completely self-driving and autonomous) vehicles. The challenge is turning out to be more difficult than anticipated a few years ago.
Implementing an AD system comes down to safely moving a vehicle from point A to point B without human assistance. This can be accomplished by a three-stage state machine called driving control loop that includes perception, motion planning, and motion execution. Perception learns and understands the driving environment, as well as the vehicle position or its localization on a map. The perception stage feeds environment and localization data to the motion or path planning that calculates the trajectory of the vehicle, in turn performed by the motion execution. If perception generates inaccurate data, the trajectory is going to be flawed. In the worst-case, it leads to catastrophic results.
A successful AD system implementation rests on a state-machine architecture that can formulate a truthful understanding of the environment, produce an efficient motion plan, and flawlessly perform its execution.
To read the full article, click here
Related Semiconductor IP
- USB 4.0 V2 PHY - 4TX/2RX, TSMC N3P , North/South Poly Orientation
- FH-OFDM Modem
- NFC wireless interface supporting ISO14443 A and B with EEPROM on SMIC 180nm
- PQC CRYSTALS core for accelerating NIST FIPS 202 FIPS 203 and FIPS 204
- USB Full Speed Transceiver
Related White Papers
- Basics of SoC I/O design: Part 2 - Hot swap & other implementation issues
- Why FIR sensing technology is essential for achieving fully autonomous vehicles
- How to Avoid Fall in Expectations for Automated Driving
- Revolutionizing High-Voltage Controller Chips for Electric Vehicles
Latest White Papers
- FastPath: A Hybrid Approach for Efficient Hardware Security Verification
- Automotive IP-Cores: Evolution and Future Perspectives
- TROJAN-GUARD: Hardware Trojans Detection Using GNN in RTL Designs
- How a Standardized Approach Can Accelerate Development of Safety and Security in Automotive Imaging Systems
- SV-LLM: An Agentic Approach for SoC Security Verification using Large Language Models