Basics of porting C-code to and between ARM CPUs: ARM7TDMI and Cortex-M0
Joseph Yiu, ARM Ltd.
EETimes, 10/17/2011 10:55 PM EDT
In the first of a three part series, Joseph Yiu, author of “The definitive guide to the ARM Cortex-M0,” provides some basic guidelines for porting your code base from other 8/16 bit MCUs to ARM and between various ARM processors starting here with the ARM 7TDMI and Cortex-M0.
As software reuse becomes more common, software porting is becoming a more common task or embedded software developers. In this three part series, we will look into differences between various common ARM processors for microcontrollers and what areas in a program need to be modified when porting software between them.
This series will conclude with issues relating to the software porting of software from 8-bit and 16-bit architectures.
To read the full article, click here
Related Semiconductor IP
- RVA23, Multi-cluster, Hypervisor and Android
- 64 bit RISC-V Multicore Processor with 2048-bit VLEN and AMM
- NPU IP Core for Mobile
- RISC-V AI Acceleration Platform - Scalable, standards-aligned soft chiplet IP
- H.264 Decoder
Related White Papers
- Debugging hard faults in ARM Cortex-M0 based SoCs
- An introduction to ARM Cortex-M0 DesignStart
- Amba bus may move MIPS into ARM territory
- Embedded Systems -> VLIW chip complicates pSOS porting
Latest White Papers
- QiMeng: Fully Automated Hardware and Software Design for Processor Chip
- RISC-V source class riscv_asm_program_gen, the brain behind assembly instruction generator
- Concealable physical unclonable functions using vertical NAND flash memory
- Ramping Up Open-Source RISC-V Cores: Assessing the Energy Efficiency of Superscalar, Out-of-Order Execution
- Transition Fixes in 3nm Multi-Voltage SoC Design