Applying DevOps to IoT solution development
Pandey Manoj, Babaria Urvashi & Soni Govind (eInfochips)
embedded.com (March 06, 2017)
There is no doubt in anyone’s mind today that enterprises across all verticals are viewing the growth of the Internet of Things (IoT) as a playground of endless opportunities with somewhat undefined rules – clearly a market that they don’t want to miss out on. A McKinsey & Company analysis estimates the total economic value of IoT technologies in the range of $4 trillion to $11.1 trillion a year by 2025.
In order to weather the big changes of IoT transformation in near future, IoT application developers and product companies must understand that faster time-to-market is very critical to success in the IoT marketplace. To achieve that, you must allow IoT development platforms to do most of the heavy lifting. This is currently a major focus for large IoT enterprises right now, and can indeed play a very key role in the development of scalable IoT applications and services, leading to faster time-to-market because of reduced costs and time of delivery. There is also reduced need for coding and testing.
To read the full article, click here
Related Semiconductor IP
- JESD204E Controller IP
- eUSB2V2.0 Controller + PHY IP
- I/O Library with LVDS in SkyWater 90nm
- 50G PON LDPC Encoder/Decoder
- UALink Controller
Related Articles
- The IoT is turning software development upside down
- Designing an Efficient DSP Solution: Choosing the Right Processor and Software Development Toolchain
- Power Management for Internet of Things (IoT) System on a Chip (SoC) Development
- Why VAD and what solution to choose?
Latest Articles
- Crypto-RV: High-Efficiency FPGA-Based RISC-V Cryptographic Co-Processor for IoT Security
- In-Pipeline Integration of Digital In-Memory-Computing into RISC-V Vector Architecture to Accelerate Deep Learning
- QMC: Efficient SLM Edge Inference via Outlier-Aware Quantization and Emergent Memories Co-Design
- ChipBench: A Next-Step Benchmark for Evaluating LLM Performance in AI-Aided Chip Design
- COVERT: Trojan Detection in COTS Hardware via Statistical Activation of Microarchitectural Events