Optimizing DSP functions in advanced FPGA architectures
pldesignline.com
Although FFT and FIR filters may seem complex, in reality they use simple add/subtract/multiply operations. So how can these arithmetic modules, along with shift and pipeline registers in modern FPGAs, be configured in different modes to provide greater flexibility and control with desirable levels of performance? In this "How To" paper, we outline practical steps, along with common mistakes to avoid, for successfully extracting optimal results in your DSP-based FPGA designs.
In high-performance, FPGA-based DSP designs, which typically demand high bandwidth, high throughput, and low operating power, there is very little room for error during the design-planning process. In order to be successful when tackling such designs, you need to understand certain nuances about design specifications and target technology architectures, as well as synthesis tools. With the realization that it is difficult to be an absolute expert on every possible aspect of DSP-based design using programmable logic devices, this article outlines some actions you can take to meet your ultimate objectives when handling these designs.
Related Semiconductor IP
- AES GCM IP Core
- High Speed Ethernet Quad 10G to 100G PCS
- High Speed Ethernet Gen-2 Quad 100G PCS IP
- High Speed Ethernet 4/2/1-Lane 100G PCS
- High Speed Ethernet 2/4/8-Lane 200G/400G PCS
Related White Papers
- SoCs: DSP World, Cores -> New DSP architectures work harder
- Implementing DSP Functions Within FPGAs
- Image stabilizers: Utilizing DSP for more advanced, scalable stabilization algorithms
- Optimizing efficiency and flexibility in DSP systems
Latest White Papers
- New Realities Demand a New Approach to System Verification and Validation
- How silicon and circuit optimizations help FPGAs offer lower size, power and cost in video bridging applications
- Sustainable Hardware Specialization
- PCIe IP With Enhanced Security For The Automotive Market
- Top 5 Reasons why CPU is the Best Processor for AI Inference