Optimizing DSP functions in advanced FPGA architectures
pldesignline.com
Although FFT and FIR filters may seem complex, in reality they use simple add/subtract/multiply operations. So how can these arithmetic modules, along with shift and pipeline registers in modern FPGAs, be configured in different modes to provide greater flexibility and control with desirable levels of performance? In this "How To" paper, we outline practical steps, along with common mistakes to avoid, for successfully extracting optimal results in your DSP-based FPGA designs.
In high-performance, FPGA-based DSP designs, which typically demand high bandwidth, high throughput, and low operating power, there is very little room for error during the design-planning process. In order to be successful when tackling such designs, you need to understand certain nuances about design specifications and target technology architectures, as well as synthesis tools. With the realization that it is difficult to be an absolute expert on every possible aspect of DSP-based design using programmable logic devices, this article outlines some actions you can take to meet your ultimate objectives when handling these designs.
To read the full article, click here
Related Semiconductor IP
- CXL 3 Controller IP
- PCIe GEN6 PHY IP
- FPGA Proven PCIe Gen6 Controller IP
- Real-Time Microcontroller - Ultra-low latency control loops for real-time computing
- AI inference engine for real-time edge intelligence
Related White Papers
- SoCs: DSP World, Cores -> New DSP architectures work harder
- Implementing DSP Functions Within FPGAs
- Image stabilizers: Utilizing DSP for more advanced, scalable stabilization algorithms
- Optimizing efficiency and flexibility in DSP systems
Latest White Papers
- Adaptable Hardware with Unlimited Flexibility for ASIC & SoC ICs
- CAST Provides a Functional Safety RISC-V Processor IP for Microchip FPGAs
- Design and Implementation of Test Infrastructure for Higher Parallel Wafer Level Testing of System-on-Chip
- Soft Tiling RISC-V Processor Clusters Speed Design and Reduce Risk
- 8051s in Modern Systems: Interfacing to AMBA Buses