Building low power into the system at the device driver leve
By Yannick Chammings, CEO, Witekio
EDN Europe (January 19, 2017)
In today’s products, power is everything. In terms of performance, products are expected to do more in less space and in the case of most devices they need to operate in a smaller power envelope than their predecessors.
For enterprise equipment that translates to lower energy costs, while for portable devices that normally means operating for longer on a single charge.
Expectations in this direction have been fuelled by Moore’s Law; every two years we manage to integrate twice as many transistors in the same physical space, leading to greater functionality. As silicon is typically priced by the mm2 and not the transistor, that also means more ‘bang for your buck’. However, Moore’s Law didn’t foresee the impact that power density would have on that continued integration, so that now power management is much more important in integrated devices.
Continually increasing integration also means that many of today’s products are based on a single device; a System-on-Chip. Within these devices there are many functions working co-dependently, which has also given rise to the need for more sophisticated power management.
To read the full article, click here
Related Semiconductor IP
- CXL 3 Controller IP
- PCIe GEN6 PHY IP
- FPGA Proven PCIe Gen6 Controller IP
- Real-Time Microcontroller - Ultra-low latency control loops for real-time computing
- AI inference engine for real-time edge intelligence
Related White Papers
Latest White Papers
- Adaptable Hardware with Unlimited Flexibility for ASIC & SoC ICs
- CAST Provides a Functional Safety RISC-V Processor IP for Microchip FPGAs
- Design and Implementation of Test Infrastructure for Higher Parallel Wafer Level Testing of System-on-Chip
- Soft Tiling RISC-V Processor Clusters Speed Design and Reduce Risk
- 8051s in Modern Systems: Interfacing to AMBA Buses