Building low power into the system at the device driver leve
By Yannick Chammings, CEO, Witekio
EDN Europe (January 19, 2017)
In today’s products, power is everything. In terms of performance, products are expected to do more in less space and in the case of most devices they need to operate in a smaller power envelope than their predecessors.
For enterprise equipment that translates to lower energy costs, while for portable devices that normally means operating for longer on a single charge.
Expectations in this direction have been fuelled by Moore’s Law; every two years we manage to integrate twice as many transistors in the same physical space, leading to greater functionality. As silicon is typically priced by the mm2 and not the transistor, that also means more ‘bang for your buck’. However, Moore’s Law didn’t foresee the impact that power density would have on that continued integration, so that now power management is much more important in integrated devices.
Continually increasing integration also means that many of today’s products are based on a single device; a System-on-Chip. Within these devices there are many functions working co-dependently, which has also given rise to the need for more sophisticated power management.
To read the full article, click here
Related Semiconductor IP
- SLVS Transceiver in TSMC 28nm
- 0.9V/2.5V I/O Library in TSMC 55nm
- 1.8V/3.3V Multi-Voltage GPIO in TSMC 28nm
- 1.8V/3.3V I/O Library with 5V ODIO & Analog in TSMC 16nm
- ESD Solutions for Multi-Gigabit SerDes in TSMC 28nm
Related White Papers
Latest White Papers
- What tamper detection IP brings to SoC designs
- Analyzing Modern NVIDIA GPU cores
- RISC-V in 2025: Progress, Challenges,and What’s Next for Automotive & OpenHardware
- Leveraging RISC-V as a Unified, Heterogeneous Platform for Next-Gen AI Chips
- Design and implementation of a hardened cryptographic coprocessor for a RISC-V 128-bit core