Zynq-7000 EPP sets stage for new era of innovations
Mike Santarini, Xilinx Xcell Journal
6/17/2011 4:27 PM EDT
Xilinx has just unveiled the first devices in a new family built around its Extensible Processing Platform (EPP), a revolutionary architecture that mates a dual ARM Cortex-A9 MPCore processor with low-power programmable logic and hardened peripheral IP all on the same device. In March of this year, Xilinx officially announced the first four devices of what it has now dubbed the Zynq-7000 EPP family.
Implemented in 28-nanometer process technology, each Zynq-7000 device is built with an ARM dual-core Cortex-A9 MPCore processing system equipped with a NEON media engine and a double-precision floating-point unit, as well as Level 1 and Level 2 caches, a multi-memory controller and a slew of commonly used peripherals (Figure 1). While FPGA vendors have previously fielded devices with both hardwired and soft onboard processors, the Zynq-7000 EPP is unique in that the ARM processor system, rather than the programmable logic, runs the show. That is, Xilinx designed the processing system to boot at power-up (before the FPGA logic) and to run a variety of operating systems independent of the programmable logic fabric. Designers then program the processing system to configure the programmable logic on an as-needed basis.
To read the full article, click here
Related Semiconductor IP
- JESD204E Controller IP
- eUSB2V2.0 Controller + PHY IP
- I/O Library with LVDS in SkyWater 90nm
- 50G PON LDPC Encoder/Decoder
- UALink Controller
Related Articles
- ARM11 MPCore Provides Existing Software Portability Across Single- CPU and Multi-CPU Designs
- The ARM Cortex-A9 Processors
- Creating the Xilinx Zynq-7000 Extensible Processing Platform
- Cortex-A9 Processor Optimization Pack
Latest Articles
- Crypto-RV: High-Efficiency FPGA-Based RISC-V Cryptographic Co-Processor for IoT Security
- In-Pipeline Integration of Digital In-Memory-Computing into RISC-V Vector Architecture to Accelerate Deep Learning
- QMC: Efficient SLM Edge Inference via Outlier-Aware Quantization and Emergent Memories Co-Design
- ChipBench: A Next-Step Benchmark for Evaluating LLM Performance in AI-Aided Chip Design
- COVERT: Trojan Detection in COTS Hardware via Statistical Activation of Microarchitectural Events