Securing nonvolatile, nonresettable counters in embedded designs
Bernhard Linke, Maxim Integrated Products
5/15/2011 12:31 AM EDT
It is sometimes desirable for warranty reasons to count and record certain events such as power cycles, operating time, hard (pushbutton) resets, and timeouts – and do so securely.
The traditional electronic counters for this purpose are built from flip-flops, using a binary code such as the one shown in Figure 1 below. The maximum count is reached when all flip flops are set, so the size of the counter is determined by the maximum number of events to be counted during the interval of interest.
To read the full article, click here
Related Semiconductor IP
- JESD204E Controller IP
- eUSB2V2.0 Controller + PHY IP
- I/O Library with LVDS in SkyWater 90nm
- 50G PON LDPC Encoder/Decoder
- UALink Controller
Related Articles
- Nonvolatile memories for 90nm SoC and beyond
- Avoid corruption in nonvolatile memory
- Design Security in Nonvolatile Flash and Antifuse FPGAs
- Securing embedded systems for networks
Latest Articles
- Crypto-RV: High-Efficiency FPGA-Based RISC-V Cryptographic Co-Processor for IoT Security
- In-Pipeline Integration of Digital In-Memory-Computing into RISC-V Vector Architecture to Accelerate Deep Learning
- QMC: Efficient SLM Edge Inference via Outlier-Aware Quantization and Emergent Memories Co-Design
- ChipBench: A Next-Step Benchmark for Evaluating LLM Performance in AI-Aided Chip Design
- COVERT: Trojan Detection in COTS Hardware via Statistical Activation of Microarchitectural Events