Securing nonvolatile, nonresettable counters in embedded designs
Bernhard Linke, Maxim Integrated Products
5/15/2011 12:31 AM EDT
It is sometimes desirable for warranty reasons to count and record certain events such as power cycles, operating time, hard (pushbutton) resets, and timeouts – and do so securely.
The traditional electronic counters for this purpose are built from flip-flops, using a binary code such as the one shown in Figure 1 below. The maximum count is reached when all flip flops are set, so the size of the counter is determined by the maximum number of events to be counted during the interval of interest.
To read the full article, click here
Related Semiconductor IP
- Flexible Pixel Processor Video IP
- Bluetooth Low Energy 6.0 Digital IP
- MIPI SWI3S Manager Core IP
- Ultra-low power high dynamic range image sensor
- Neural Video Processor IP
Related White Papers
- Nonvolatile memories for 90nm SoC and beyond
- Avoid corruption in nonvolatile memory
- Design Security in Nonvolatile Flash and Antifuse FPGAs
- Securing embedded systems for networks
Latest White Papers
- Enabling Space-Grade AI/ML with RISC-V: A Fully European Stack for Autonomous Missions
- CANDoSA: A Hardware Performance Counter-Based Intrusion Detection System for DoS Attacks on Automotive CAN bus
- How Next-Gen Chips Are Unlocking RISC-V’s Customization Advantage
- Efficient Hardware-Assisted Heap Memory Safety for Embedded RISC-V Systems
- Automatically Retargeting Hardware and Code Generation for RISC-V Custom Instructions