Securing nonvolatile, nonresettable counters in embedded designs
Bernhard Linke, Maxim Integrated Products
5/15/2011 12:31 AM EDT
It is sometimes desirable for warranty reasons to count and record certain events such as power cycles, operating time, hard (pushbutton) resets, and timeouts – and do so securely.
The traditional electronic counters for this purpose are built from flip-flops, using a binary code such as the one shown in Figure 1 below. The maximum count is reached when all flip flops are set, so the size of the counter is determined by the maximum number of events to be counted during the interval of interest.
To read the full article, click here
Related Semiconductor IP
- RVA23, Multi-cluster, Hypervisor and Android
- 64 bit RISC-V Multicore Processor with 2048-bit VLEN and AMM
- NPU IP Core for Mobile
- H.264 Decoder
- V-by-One® HS plus Tx/Rx IP
Related White Papers
- Nonvolatile memories for 90nm SoC and beyond
- Avoid corruption in nonvolatile memory
- Design Security in Nonvolatile Flash and Antifuse FPGAs
- Securing embedded systems for networks
Latest White Papers
- RISC-V source class riscv_asm_program_gen, the brain behind assembly instruction generator
- Concealable physical unclonable functions using vertical NAND flash memory
- Ramping Up Open-Source RISC-V Cores: Assessing the Energy Efficiency of Superscalar, Out-of-Order Execution
- Transition Fixes in 3nm Multi-Voltage SoC Design
- CXL Topology-Aware and Expander-Driven Prefetching: Unlocking SSD Performance