Right-Sizing Your Cryptographic Processing Solution
By Synopsys
The cornerstone of all security solutions that deal with confidentiality, integrity and authentication is cryptography. Cryptography is a complex math problem used to help create security applications. Algorithms vary for different applications and are used for specific purposes. The common cryptographic algorithms are symmetric block ciphers for confidentiality, hash functions for integrity, and public key cryptography for authentication. Performance requirements for these operations range widely depending on the specific application and market. Implementation and runtime costs for meeting these requirements vary even widely.
In this white paper we investigate different cryptography implementation options and trade-offs, describe the measurable parameters, and analyze examples. We introduce and use the new EEMBC SecureMark™ benchmark for these measurements. This benchmark was developed under the umbrella of EEMBC by an industry consortium chaired by Synopsys. It provides an accurate, reliable tool to compare the efficiency of cryptography implementations for several security profiles quickly and equitably.
To read the full article, click here
Related Semiconductor IP
- JESD204E Controller IP
- eUSB2V2.0 Controller + PHY IP
- I/O Library with LVDS in SkyWater 90nm
- 50G PON LDPC Encoder/Decoder
- UALink Controller
Related Articles
- ARChitect Processor Configurator: The Power of Configurable Processing At Your Fingertips
- Tutorial: Enhance Your Signal Processing Toolbox with Complex Notation
- This Isn't Your Father's JTAG Anymore
- Reconfiguring Design -> Reconfigurable computing aims at signal processing
Latest Articles
- Crypto-RV: High-Efficiency FPGA-Based RISC-V Cryptographic Co-Processor for IoT Security
- In-Pipeline Integration of Digital In-Memory-Computing into RISC-V Vector Architecture to Accelerate Deep Learning
- QMC: Efficient SLM Edge Inference via Outlier-Aware Quantization and Emergent Memories Co-Design
- ChipBench: A Next-Step Benchmark for Evaluating LLM Performance in AI-Aided Chip Design
- COVERT: Trojan Detection in COTS Hardware via Statistical Activation of Microarchitectural Events