Right-Sizing Your Cryptographic Processing Solution
By Synopsys
The cornerstone of all security solutions that deal with confidentiality, integrity and authentication is cryptography. Cryptography is a complex math problem used to help create security applications. Algorithms vary for different applications and are used for specific purposes. The common cryptographic algorithms are symmetric block ciphers for confidentiality, hash functions for integrity, and public key cryptography for authentication. Performance requirements for these operations range widely depending on the specific application and market. Implementation and runtime costs for meeting these requirements vary even widely.
In this white paper we investigate different cryptography implementation options and trade-offs, describe the measurable parameters, and analyze examples. We introduce and use the new EEMBC SecureMark™ benchmark for these measurements. This benchmark was developed under the umbrella of EEMBC by an industry consortium chaired by Synopsys. It provides an accurate, reliable tool to compare the efficiency of cryptography implementations for several security profiles quickly and equitably.
To read the full article, click here
Related Semiconductor IP
- Bluetooth Low Energy 6.0 Digital IP
- Ultra-low power high dynamic range image sensor
- Flash Memory LDPC Decoder IP Core
- SLM Signal Integrity Monitor
- Digital PUF IP
Related White Papers
- ARChitect Processor Configurator: The Power of Configurable Processing At Your Fingertips
- Tutorial: Enhance Your Signal Processing Toolbox with Complex Notation
- Making your UWB solutions ''Future Proof''
- This Isn't Your Father's JTAG Anymore
Latest White Papers
- How Next-Gen Chips Are Unlocking RISC-V’s Customization Advantage
- Efficient Hardware-Assisted Heap Memory Safety for Embedded RISC-V Systems
- Automatically Retargeting Hardware and Code Generation for RISC-V Custom Instructions
- How Mature-Technology ASICs Can Give You the Edge
- Exploring the Latest Innovations in MIPI D-PHY and MIPI C-PHY