Power Aware Verification of ARM-Based Designs
Ping Yeung and Erich Marschner, Mentor Graphics
11/4/2010 12:49 PM EDT
Power dissipation has become a key constraint for the design of today’s complex chips. Minimizing power dissipation is essential for battery-powered portable devices, as well as for reducing cooling requirements for non-portable systems. Such minimization requires active power management built into a device.
In a System-on-Chip (SoC) design with active power management, various subsystems can be independently powered up or down, and/or powered at different voltage levels. It is important to verify that the SoC works correctly under active power management.
When a given subsystem is turned off, its state will be lost, unless some or all of the state is explicitly retained during power down. When that subsystem is powered up again, it must either be reset, or it must restore its previous state from the retained state, or some combination thereof. When a subsystem is powered down, it must not interfere with the normal operation of the rest of the SoC.
To read the full article, click here
Related Semiconductor IP
- USB 4.0 V2 PHY - 4TX/2RX, TSMC N3P , North/South Poly Orientation
- FH-OFDM Modem
- NFC wireless interface supporting ISO14443 A and B with EEPROM on SMIC 180nm
- PQC CRYSTALS core for accelerating NIST FIPS 202 FIPS 203 and FIPS 204
- USB Full Speed Transceiver
Related White Papers
- Low Power Analysis and Verification of Super Speed Inter-Chip (SSIC) IP
- Challenges and Benefits of Low Power Design Verification with CPF for a standalone IP
- Robust Low power Architecture verification Strategy
- Integrated Low Power Verification Suite: The way forward for SoC use-case Verification
Latest White Papers
- FastPath: A Hybrid Approach for Efficient Hardware Security Verification
- Automotive IP-Cores: Evolution and Future Perspectives
- TROJAN-GUARD: Hardware Trojans Detection Using GNN in RTL Designs
- How a Standardized Approach Can Accelerate Development of Safety and Security in Automotive Imaging Systems
- SV-LLM: An Agentic Approach for SoC Security Verification using Large Language Models