Power Aware Verification of ARM-Based Designs
Ping Yeung and Erich Marschner, Mentor Graphics
11/4/2010 12:49 PM EDT
Power dissipation has become a key constraint for the design of today’s complex chips. Minimizing power dissipation is essential for battery-powered portable devices, as well as for reducing cooling requirements for non-portable systems. Such minimization requires active power management built into a device.
In a System-on-Chip (SoC) design with active power management, various subsystems can be independently powered up or down, and/or powered at different voltage levels. It is important to verify that the SoC works correctly under active power management.
When a given subsystem is turned off, its state will be lost, unless some or all of the state is explicitly retained during power down. When that subsystem is powered up again, it must either be reset, or it must restore its previous state from the retained state, or some combination thereof. When a subsystem is powered down, it must not interfere with the normal operation of the rest of the SoC.
To read the full article, click here
Related Semiconductor IP
- HBM4 PHY IP
- 10-bit SAR ADC - XFAB XT018
- eFuse Controller IP
- Secure Storage Solution for OTP IP
- Ultra-Low-Power LPDDR3/LPDDR2/DDR3L Combo Subsystem
Related Articles
- Low Power Analysis and Verification of Super Speed Inter-Chip (SSIC) IP
- Challenges and Benefits of Low Power Design Verification with CPF for a standalone IP
- Robust Low power Architecture verification Strategy
- Integrated Low Power Verification Suite: The way forward for SoC use-case Verification
Latest Articles
- Making Strong Error-Correcting Codes Work Effectively for HBM in AI Inference
- Sensitivity-Aware Mixed-Precision Quantization for ReRAM-based Computing-in-Memory
- ElfCore: A 28nm Neural Processor Enabling Dynamic Structured Sparse Training and Online Self-Supervised Learning with Activity-Dependent Weight Update
- A 14ns-Latency 9Gb/s 0.44mm² 62pJ/b Short-Blocklength LDPC Decoder ASIC in 22FDX
- Pipeline Stage Resolved Timing Characterization of FPGA and ASIC Implementations of a RISC V Processor