Legacy RTL brought into system-level flow
(06/26/2006 9:00 AM EDT)
As system-on-chip complexity grows, designers are turning to electronic system-level (ESL) methodologies to create next-generation designs.
Designers might hesitate to use ESL because of legacy RTL intellectual-property libraries that represent thousands of man-years of invested time. But legacy RTL IP can be the basis for new designs that leverage ESL methodologies.
Designers who have tried ESL design recognize that some parts of a design are more conducive to ESL while others are more efficiently implemented using established IP libraries. Typically, ESL is used to create new, differentiated system components; RTL IP is best for the obligatory nondifferentiated parts of the design.
Where do these two methodologies come together? Actually, they are different aspects of a holistic electronic-system design methodology.
ESL does not replace RTL design. Instead, the ESL design flow extends RTL flows into higher levels of abstraction, much as RTL design extends gate-level design.
Platform-based design lets designers automatically integrate ESL modules with existing RTL IP. Platform-based design is made more effective when it uses Spirit XML data books from the Spirit Consortium to describe the IP. These data books include configuration and validation information to help determine the processes that must be executed to integrate the block into a system-on-chip design.
To read the full article, click here
Related Semiconductor IP
- USB 4.0 V2 PHY - 4TX/2RX, TSMC N3P , North/South Poly Orientation
- FH-OFDM Modem
- NFC wireless interface supporting ISO14443 A and B with EEPROM on SMIC 180nm
- PQC CRYSTALS core for accelerating NIST FIPS 202 FIPS 203 and FIPS 204
- USB Full Speed Transceiver
Related White Papers
- Gbit interface forces analog IP into digital flow
- Transactional level as the new design and verification abstraction above RTL
- From Behavioral to RTL Design Flow in SystemC
- A Chip IP Integrator for System Level Design
Latest White Papers
- FastPath: A Hybrid Approach for Efficient Hardware Security Verification
- Automotive IP-Cores: Evolution and Future Perspectives
- TROJAN-GUARD: Hardware Trojans Detection Using GNN in RTL Designs
- How a Standardized Approach Can Accelerate Development of Safety and Security in Automotive Imaging Systems
- SV-LLM: An Agentic Approach for SoC Security Verification using Large Language Models