High-Level Synthesis - Ready for prime-time?
Maneesh Soni, Texas Instruments, Inc., Jack Erickson, Cadence Design Systems, Inc.
EETimes (11/23/2010 7:51 PM EST)
For about two decades, hardware designers have been trying to use high-level synthesis (HLS) tools. The primary goal of high-level synthesis tools has been to increase design and verification productivity by raising the level of abstraction and by defining the architectures using less code. In addition, the idea is to also reduce complexity and the number of bugs introduced due to human-error, increase simulation speed, and facilitate exploration of alternative micro-architecture choices.
This article describes the work done at Texas Instruments (TI) to research the suitability of the latest generation of HLS tools for hardware design. Particularly, the analysis is focused on C-to-Silicon Compiler from Cadence Design Systems. The findings will interest RTL designers and architects who might be considering adoption of HLS tools, methodologies, and flows.
To read the full article, click here
Related Semiconductor IP
- Sine Wave Frequency Generator
- CAN XL Verification IP
- Rad-Hard GPIO, ODIO & LVDS in SkyWater 90nm
- 1.22V/1uA Reference voltage and current source
- 1.2V SLVS Transceiver in UMC 110nm
Related White Papers
- How High-Level Synthesis Can Raise the Efficiency of Design Reuse
- High-level synthesis, verification and language
- The future is High-Level Synthesis
- Building a NAND flash controller with high-level synthesis
Latest White Papers
- On the Thermal Vulnerability of 3D-Stacked High-Bandwidth Memory Architectures
- OmniSim: Simulating Hardware with C Speed and RTL Accuracy for High-Level Synthesis Designs
- Balancing Power and Performance With Task Dependencies in Multi-Core Systems
- LLM Inference with Codebook-based Q4X Quantization using the Llama.cpp Framework on RISC-V Vector CPUs
- PCIe 5.0: The universal high-speed interconnect for High Bandwidth and Low Latency Applications Design Challenges & Solutions